[1] 付金华,喻建,徐黎明,等. 鄂尔多斯盆地致密油勘探开发新进展及
规模富集可开发主控因素[J]. 中国石油勘探,2015,20(5):9-19.
Fu Jinhua, Yu Jian,Xu Liming, et al . New progress in
exploration and development of tight oil in Ordos Basin
and main controlling factors of large-scale enrichment and
exploitable capacity[J]. China Petroleum Exploration, 2015,
20(5):9-19.
[2] 冯张斌,马福建,陈波,等. 鄂尔多斯盆地长7 致密油地质工程一
体化解决方案: 针对科学布井和高效钻井[J]. 中国石油勘探,2020,
25(2):155-168.
Feng Zhangbin, Ma Fujian, Chen Bo, et al . A Geologyengineering
integration solution for tight oil exploration of the
Chang-7 member, Yanchang Formation in the Ordos Basinfocusing
on scientific well spacing and efficient drilling[J].
China Petroleum Exploration, 2020,25(2):155-168.
[3] 付金华,牛小兵,淡卫东,等. 鄂尔多斯盆地中生界延长组长7 段
页岩油地质特征及勘探开发进展[J]. 中国石油勘探,2019,24(5):
601-614.
Fu Jinhua, Niu Xiaobing, Dan Weidong, et al . The geological characteristics and the progress on exploration and development
of shale oil in Chang7 member of Mesozoic Yanchang
Formation, Ordos Basin[J]. China Petroleum Exploration, 2019,
24(5):601-614.
[4] 王汇智,赵卫卫,何浩男,等. 鄂尔多斯盆地陇东地区致密油储层
特征研究:以鄂尔多斯盆地长7 段为例[J]. 非常规油气,2019,6(2):
46-55.
Wang Huizhi, Zhao Weiwei, He Haonan, et al . Characteristics
of tight oil reserviors in Ordos Basin, a case study of C7
member in Longdong area[J]. Unconventional Oil & Gas, 2019,
6(2):46-55.
[5] 邹才能,赵政璋,杨华,等.陆相湖盆深水砂质碎屑流成因机制与分布
特征:以鄂尔多斯盆地为例[J].沉积学报,2009,27(6):1065-1075.
Zou Caineng, Zhao Zhengzhang, Yang Hua, et al .Genetic
mechanism and distribution of sandy debris flows in terrestrial
lacustrine basin[J]. Acta Sedimentologica Sinica, 2009,27(6):
1065-1075.
[6] 李相博,刘化清,张忠义,等. 深水块状砂岩碎屑流成因的直接证据:
“泥包砾”结构:以鄂尔多斯盆地上三叠统延长组研究为例[J]. 沉积
学报,2014,32(4):42-51.
Li Xiangbo, Liu Huaqing, Zhang Zhongyi, et al . “Argillaceous
parcel”structure: a direct evidence of debris flow origin of
deep-water massive sandstone of Yanchang Formation,Upper
Triassic,the Ordos Basin[J]. Acta Sedimentologica Sinica,2014,
32(4):42-51.
[7] Shanmugam G, Lehtonen L R , Straume T, et al . Slump and
debris flow dominated upper slope facies in the Cretaceous of the
Norwegian and Northern North Seas (61°~ 67 °N): implications
for sand distribution[J]. AAPG Bulletin, 1994,78(6):910-937.
[8] 李国欣,朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J].
中国石油勘探,2020,25(2):1-13.
Li Guoxin, Zhu Rukai. Progress, challenges and key issues in
the unconventional oil and gas development of CNPC[J]. China
Petroleum Exploration, 2020,25(2):1-13.
[9] 付金华,李士祥,侯雨庭,等. 鄂尔多斯盆地延长组7 段Ⅱ类页岩油
风险勘探突破及其意义[J]. 中国石油勘探,2020,25(1):78-92.
Fu Jinhua, Li Shixiang, Hou Yuting, et al . Breakthrough
of risk exploration for Class Ⅱ shale oil in Chang 7 member
of the Yanchang Formation and its significance in the Ordos
Basin[J]. China Petroleum Exploration, 2020,25(1):78-92.
[10] 马润勇,朱浩平,张道法,等. 鄂尔多斯盆地基底断裂及其现代活动
性[J]. 地球科学与环境学报,2009,31(4):400-408.
Ma Runyong, Zhu Haoping, Zhang Daofa, et al , Basement
faults and their recent activity in Ordos Basin[J]. Journal of
Earth Sciences and Environment, 2009,31(4):400-408.
[11] 赵文智,胡素云,汪泽成,等. 鄂尔多斯盆地基底断裂在上三叠统延
长组石油聚集中的控制作用[J]. 石油勘探与开发,2003,30(5):13-17.
Zhao Wenzhi, Hu Suyun, Wang Zecheng, et al . The control
of basement faults on Yanchang Formation hydrocarbon
accumulations in Ordos Basin[J]. Petroleum Exploration and
Production, 2003,30(5):13-17.
[12] 赵振宇,郭彦如,王艳,等. 鄂尔多斯盆地构造演化及古地理特征研
究进展[J]. 特种油气藏,2012,19(5):15-20.
Zhen Zhenyu, Guo Yanru, Wang Yan, et al . The study on
structural evolution and paleo-geography in Ordos Basin[J].
Special Oil & Gas Reserviors, 2012,19(5):15-20.
[13] 邸领军,张东阳,王宏科. 鄂尔多斯盆地喜山期构造运动与油气成
藏[J]. 石油学报,2003,24,(2):34-37.
Di Lingjun, Zhang Dongyang, Wang Hongke. Himalayan
tectonic movement and petroleum reservoir in Ordos Basin[J].
Acta Petrolei Sinica, 2003,24(2):34-37.
[14] Cheung P S Y, Heliot D. Workstation based fracture evaluation
using borehole images and wireline logs[C]. SPE 65th Annual
Technical Conference and Exhibition, Society of Petroleum
Engineers, New Orleans, LA, 1990:465-474.
[15] Richard Y S, David T. Fracture pattern and associated aperture
distubution: example from the foothills, western Canada[C],
SPWLA 46th Annual Logging Symposium, 2005.
[16] Xie J, Qiu K B, Zhong B, et al . Construction of a 3D
geomechanical model for development of a shale gas reservoir
in the Sichuan Basin[J]. SPE Drilling & Completion, 2018,33:
275-297.
[17] Byerlee J D. Friction of rocks [J]. Pure and Applied Geophysics,
1978,116:615-626.
[18] Zoback M D. Reservoir geomechanics[M]. Cambridge:
Cambridge University Press, 2010:125-126.
[19] Barton C A, Zoback M D, Moos D. Fluid flow along
potentially active faults in crystalline rock[J]. Geology, 1995,
23:683-686.
[20] Baihly J D, Malpani R, Edwards C, et al . Unlocking the
shale mystery: how lateral measurements and well placement
impact completions and resultant production[C]. SPE Annual
Technical Conference and Exhibition.Society of Petroleum
Engineers, 2010.
[21] Weng X, Kresse O, Cohen C, et al . Modeling of hydraulicfracture-
network propagation in a naturally fractured
formation[J]. SPE Production & Operations, 2011,26(4),368-
380.
[22] Longoria R A, Liang T, Huynh U T, et al . Water blocks
in tight formations: the role of matrix/fracture interaction in
hydrocarbon-permeability reduction and its implications in the
use of enhanced oil recovery techniques[J]. SPE Journal, 2017,
22(5):1393-1401.
[23] Wijaya N, Sheng J J. Shut-in effect in removing water
blockage in shale-oil reservoirs with stress-dependent
permeability considered[J]. SPE Reservoir Evaluation &
Engineering, 2020,23(1):81-94.
[24] Potapenko D I, Williams R D, Desroches J, et al . Securing
long-term well productivity of horizontal wells through
optimization of post fracturing operations[C]. SPE Annual
Technical Conference and Exhibition, 2017.
[25] Deen T, Daal J, Tucker J. Maximizing well deliverability
in the Eagle Ford shale through flowback operations[C].
SPE Annual Technical Conference and Exhibition. Society of
Petroleum Engineers,2015.
[26] Rodriguez A, Maldonado F. Evaluating pressure drawdown
strategy for hydraulically fracture shale gas condensate
producers[C]. SPE Oklahoma City Oil and Gas Symposium.
Society of Petroleum Engineers, 2019. |