[1] 付金华.鄂尔多斯盆地太原组致密灰岩天然气成藏地质特征与勘探潜力[J].地学前缘,2023,30(1):20-29.
Fu Jinhua. Accumulation characteristics and exploration potential of tight limestone gas in the Taiyuan Formation of the Ordos Basin[J]. Earth Science Frontiers, 2023,30(1):20-29.
[2] 刘新社,张涛,黄道军,等.鄂尔多斯盆地中东部太原组石灰岩天然气勘探新突破及勘探方向[J].天然气工业,2023,43(5):1-11.
Liu Xinshe, Zhang Tao, Huang Daojun, et al. New breakthrough in and direction of natural gas exploration in Taiyuan Formation limestone in the central and eastern Ordos Basin[J]. Natural Gas Industry, 2023,43(5):1-11.
[3] 兰朝利,张君峰,陶维祥,等.鄂尔多斯盆地神木气田太原组沉积特征与演化[J].地质学报,2011,85(4):533-542.
Lan Chaoli, Zhang Junfeng, Tao Weixiang, et al. Sedimentary characteristics and evolution of the upper carboniferous Taiyuan Formation, Shenmu Gasfield, northeastern Ordos Basin[J]. Acta Geologica Sinica, 2011,85(4):533-542.
[4] 蒙晓灵,张宏波,冯强汉,等.鄂尔多斯盆地神木气田二叠系太原组天然气成藏条件[J].石油与天然气地质,2013,34(1):37-41.
Meng Xiaoling, Zhang Hongbo, Feng Qianghan, et al. Gas accumulation conditions of the Permian Taiyuan Formation in Shenmu Gasfield, Ordos Basin[J]. Oil & Gas Geology, 2013, 34(1):37-41.
[5] 杨华,刘新社,闫小雄,等.鄂尔多斯盆地神木气田的发现与天然气成藏地质特征[J].天然气工业,2015,35(6):1-13.
Yang Hua, Liu Xinshe, Yan Xiaoxiong, et al. The Shenmu Gasfield in the Ordos Basin: its discovery and reservoir- forming geological characteristics[J]. Natural Gas Industry, 2015, 35(6):1-13.
[6] Suleimenova A, Wang X, Zhu D, et al. Comparative study of acid fracturing and propped hydraulic fracturing for a tight carbonate formation[J]. SPE Europec featured at 78th EAGE Conference and Exhibition, SPE, 2016, 180114.
[7] Guo Jianchun, Ren Jichuan, Wang Shibin, et al. Comprehensive study of fracture flow characteristic and feasibility of hybrid volume stimulation technique in tight fractured carbonate gas reservoir[J]. Journal of Petroleum Science and Engineering, 2019(174):362-373.
[8] 储铭汇.致密碳酸盐岩储层复合缝网酸压技术研究及矿场实践:以大牛地气田下古生界马五5碳酸盐岩储层为例[J].石油钻采工艺,2017,39(2):237-243.
Chu Minghui. Study on composite fracture-network acid fracturing technology for tight carbonate reservoirs and its field application: a case study on Mawu5 carbonate reservoir of Lower Paleozoic in Daniudi Gasfield[J]. Oil Drilling & Production Technology, 2017,39(2):237-243.
[9] 张以明,才博,何春明,等.超高温超深非均质碳酸盐岩储层地质工程一体化体积改造技术[J].石油学报,2018,39(1):92-100.
Zhang Yiming, Cai Bo, He Chunming, et al. Volume fracturing technology based on geo-engineering integration for ultra-high temperature and ultra-deep heterogeneous carbonate reservoir[J]. Acta Petrolei Sinica, 2018,39(1):92-100.
[10] Xi Wu, Oeth C V, Zhu D, et al. Integrated 3D acid fracturing model for carbonate reservoir stimulation[C]. Rio de Janeiro: Offshore Technology Conference Brasil, 2013.
[11] Wu Weiwei, Szabian M, Sharma M. Effect of acid etching on surface topography, mechanical properties and fracture conductivity in shale[C]. Austin: Unconventional Resources Technology Conference, 2020.
[12] Oeth C V, Hill A D, Zhu D. Acid fracturing: fully 3D simulation and performance prediction[C]. The Woodlands: SPE Hydraulic Fracturing Technology Conference, 2013.
[13] Guerra J, Zhu D, Hill A D. Impairment of fracture conductivity in the Eagle Ford Shale Formation[C]. The Woodlands: SPE Hydraulic Fracturing Technology Conference and Exhibition, 2017.
[14] Srinath M, Philip D N. Computational and experimental study of microfracture conductivity in the Eagle Ford Shale using microproppant pillars[C]. Abu Dhabi:SPE Reservoir Characterisation and Simulation Conference and Exhibition, 2017.
[15] Sharma M, Manchanda R. The role of induced un-propped (IU) fractures in unconventional oil and gas wells[C]. Houston:SPE Annual Technical Conference and Exhibition, 2015.
[16] Divyendu T, Maysam P. Effect of acid on productivity of fractured shale reservoirs[C]. Denver: Unconventional Resources Technology Conference, 2014.
[17] 雷群,翁定为,才博,等.中国石油勘探压裂技术进展、关键问题及对策[J].中国石油勘探,2023,28(5):15-27.
Lei Qun, Weng Dingwei, Cai Bo, et al. Progress, key challenges and countermeasures of reservoir stimulation technology of PetroChina[J]. China Petroleum Exploration, 2023,28(5):15-27.
[18] 席胜利,刘新社,任军峰,等.鄂尔多斯盆地风险勘探领域油气成藏认识新进展与勘探潜力[J].中国石油勘探,2023,28(3):34-48.
Xi Shengli, Liu Xinshe, Ren Junfeng, et al. New understanding of hydrocarbon accumulation and exploration potential in risk exploration field in Ordos Basin[J]. China Petroleum Exploration, 2023,28(3):34-48.
[19] 王瑞杰,王永康,马福建,等.页岩油地质工程一体化关键技术研究与应用:以鄂尔多斯盆地三叠系延长组长7段为例[J]. 中国石油勘探,2022,27(1):151-163.
Wang Ruijie, Wang Yongkang, Ma Fujian, et al. Research and application of key technologies of geology and engineering integration for shale oil development: a case study of Chang 7 member of the Triassic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2022,27(1):151-163.
[20] 周详,张士诚,邹雨时,等.致密油藏水平井体积压裂裂缝扩展及产能模拟[J].西安石油大学学报(自然科学版),2015,30(4):53-58.
Zhou Xiang, Zhang Shicheng, Zou Yushi, et al. Simulation of fracture propagation and productivity of volume fracturing horizontal well in tight oil reservoirs[J]. Journal of Xi’an Shiyou University( Natural Science Edition), 2015,30(4):53-58.
[21] 王文东,苏玉亮,慕立俊,等.致密油藏体积压裂技术应用[J].新疆石油地质,2013,34(3):345-348.
Wang Wendong,Su Yuliang,Mu Lijun,et al.Application of network fracturing technology to tight oil reservoirs[J]. Xinjiang Petroleum Geology, 2013,34(3):345-348.
[22] 赵振峰,王文雄,邹雨时,等.致密砂岩油藏体积压裂裂缝扩展数值模拟研究[J].新疆石油地质,2014,35(4):447-451.
Zhao Zhenfeng, Wang Wenxiong, Zou Yushi, et al.Numerical simulation research of fracture propagation in tight sand reservoir by volume fracturing process[J]. Xinjiang Petroleum Geology, 2014,35(4):447-451.
[23] Doe T W,Boyce G. Orientation of hydraulic fractures in salt under hydrostatic and non-hydrostatic stresses[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1989,26(6):605-611.
[24] Cipolla C L, Warpinski N R, Matrrhofer M J, et al. The relationship between fracture complexity, reservoir properties, and fracture treatment design[R]. SPE 115769, 2008.
[25] 吴奇,胥云,王晓泉,等.非常规油气藏体积改造技术:内涵、优化设计与实现[J].石油勘探与开发,2012,39(3):352-358.
Wu Qi, Xu Yun, Wang Xiaoquan, et al. Volume fracturing technology of unconventional reservoirs: connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2012,39(3):352-358.
[26] Sondergeld C H,Newsham K E,Comisky J T,et al. Petrophysical considerations in evaluating and producing shale gas resources[C]. Pittsburgh: SPE Unconventional Gas Conference, 2010.
[27] Rickman R, Mullen M, Peter E, et al. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett Shale[C]. Denver: SPE Annual Technical Conference and Exhibition, SPE 115258, 2008.
[28] 李年银,代金鑫,张倩,等.一种有效开发致密碳酸盐岩气藏的新工艺:体积酸压[J].科学技术与工程,2015,15(34):27-38.
Li Nianyin, Dai Jinxin, Zhang Qian, et al. A new technology for the effective development of tight-gas carbonate reservoir: volume acid fracturing[J]. Science Technology and Engineering, 2015,15(34):27-38.
[29] 肖勇军,郭建春,王文耀,等.不同粒径组合支撑剂导流能力实验研究[J].断块油气田,2009,16(3):102-104.
Xiao Yongjun, Guo Jianchun, Wang Wenyao, et al. Study on flow conductivity of proppant with different size combination[J]. Fault- Block Oil & Gas Field, 2009,16(3):102-104.
[30] 张毅,马兴芹,靳保军.压裂支撑剂长期导流能力试验[J].石油钻采工艺,2004,26(1):59-61.
Zhang Yi, Ma Xingqin, Jin Baojun. Long term fracture conductivity of fracturing propant[J]. Oil Drilling & Production Technology, 2004,26(1):59-61.
[31] 王雷,张士诚,张文宗,等.复合压裂不同粒径支撑剂组合长期导流能力实验研究[J].天然气工业,2005,25(9):64-66.
Wang Lei, Zhang Shicheng, Zhang Wenzong, et al. Conductivity of the proppant combination with different grain sizes in complex fracturing[J]. Natural Gas Industry, 2005,25(9): 64-66.
[32] 曹科学,蒋建方,郭亮,等.石英砂陶粒组合支撑剂导流能力实验研究[J].石油钻采工艺,2016,38(5):684-688.
Cao Kexue, Jiang Jianfang, Guo Liang, et al. Experimental study on the flow conductivity of quartz sand-ceramsite proppant[J]. Oil Drilling & Production Technology, 2016,38(5): 684-688. |