[1] 王屿涛,雷玲,向英,等. 准噶尔盆地重点区带石油储量增长规律及勘探潜力分析[J]. 中国石油勘探,2012,17(4):8-14.
Wang Yutao, Lei Ling, Xiang Ying, et al . Analysis about growth law and exploration potential of oil reserves in key zones of Junggar Basin[J]. China Petroleum Exploration, 2012,17(4):8-14.
[2] 刘鹏,邱雯,李杭兵,等. 数理模型储量预测法在泌阳凹陷的应用研究[J]. 石油地质与工程,2016,30(2):17-20.
Liu Peng, Qiu Wen, Li Hangbing, et al . Application of mathematical model reserves prediction method in Biyang Depression[J]. Petroleum Geology and Engineering, 2016,30(2): 17-20.
[3] 高磊,郭元岭,宗国洪,等. 探明储量增长“帚状”预测模型:以济阳坳陷为例[J]. 石油勘探与开发,2002,29(6):45-47.
Gao Lei, Guo Yuanling, Zong Guohong, et al . A broom-type model for predicting incremental proved reserves[J]. Petroleum Exploration and Development, 2002,29(6):45-47.
[4] 刘国全,贾丽,刘娟霞,等. 石油探明储量增长趋势预测方法及应用[J]. 中国石油勘探,2014,19(4):70-74.
Liu Guoquan, Jia Li, Liu Juanxia, et al . Prediction method of proven oil reserve growth trend and its application[J]. China Petroleum Exploration, 2014,19(4):70-74.
[5] 余果,李海涛,陈艳茹. 四川盆地天然气储量增长趋势[J]. 天然气勘探与开发,2021,44(1):30-37.
Yu Guo, Li Haitao, Chen Yanru. Predicting the growth trend of natural-gas reserves in Sichuan Basin based on multi-cycle models[J]. Natural Gas Exploration and Development, 2021, 44(1):30-37.
[6] 刘鹏,李显路,孙凤华. 泌阳凹陷油气勘探规划指标预测及方法研究[J]. 石油地质与工程,2020,34(6):43-46.
Liu Peng, Li Xianlu, Sun Fenghua. Indicators prediction and method research of oil and gas exploration planning in Biyang Sag[J]. Petroleum Geology and Engineering, 2020,34(6):43-46.
[7] 王伟锋,刘鹏,郑玲,等. 鄂尔多斯盆地天然气储量和产量预测分析[J]. 天然气地球科学,2014,25(9):1483-1490.
Wang Weifeng, Liu Peng, Zheng Ling, et al . Natural gas reserves and production prediction of Ordos Basin[J]. Natural Gas Geoscience, 2014,25(9):1483-1490.
[8] 张艳,张春雷,成育红,等. 基于机器学习的多地震属性沉积相分析[J]. 特种油气藏,2018,25(3):13-17.
Zhang Yan, Zhang Chunlei, Cheng Yuhong, et al . Multiattribute seismic sedimentary facies analysis based on machine learning[J]. Special Oil & Gas Reservoirs, 2018,25(3):13-17.
[9] Das V, Mukerji T. Petrophysical properties prediction from pre-stack seismic data using convolutional neural networks[M]// Bevc D, Nedorub O. SEG Technical Program Expanded Abstracts 2019. Houston: Society of Exploration Geophysicists, 2019:2328-2332.
[10] 吴正阳,莫修文,柳建华,等. 裂缝性储层分级评价中的卷积神经网络算法研究与应用[J]. 石油物探,2018,57(4):618-626.
Wu Zhengyang, Mo Xiuwen, Liu Jianhua, et al . Convolutional neural network algorithm for classification evaluation of fractured reservoirs[J]. Geophysical Prospecting for Petroleum, 2018,57(4):618-626.
[11] 安鹏,曹丹平,赵宝银,等. 基于LSTM 循环神经网络的储层物性参数预测方法研究[J]. 地球物理学进展,2019,34(5):1849-1858.
An Peng, Cao Danping, Zhao Baoyin, et al . Reservoir physical parameters prediction based on LSTM recurrent neural network[J]. Progress in Geophysics, 2019,34(5):1849-1858.
[12] Alfarrja M, Alregib G. Semi-supervised learning for acoustic impedance inversion[M]//Bevc D, Nedorub O. SEG Technical Program Expanded Abstracts 2019. Houston: Society of Exploration Geophysicists, 2019:2298-2302.
[13] 黄旭日,代月,徐云贵,等. 基于深度学习算法不同数据集的地震反演实验[J]. 西南石油大学学报( 自然科学版),2020,42(6):16-25.
Huang Xuri, Dai Yue, Xu Yungui, et al . Seismic inversion experiments based on deep learning algorithm using different datasets[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020,42(6):16-25.
[14] 王惠君,赵桂萍,李良,等. 基于卷积神经网络(CNN) 的泥质烃源岩TOC 预测模型:以鄂尔多斯盆地杭锦旗地区为例[J]. 中国科学院大学学报,2020,37(1):103-112.
Wang Huijun, Zhao Guiping, Li Liang, et al . TOC prediction model for muddy source rocks based on convolutional neural network (CNN): a case study of the Hangjinqi area of the Ordos Basin[J]. Journal of University of Chinese Academy of Sciences, 2020,37(1):103-112.
[15] 傅瑞军,郭元岭. 探明储量增长影响因素分析[J]. 油气地质与采收率,2003,10(4):14-15.
Fu Ruijun, Guo Yuanling. Analysis on factors of influencing the increase of proven reserves[J]. Petroleum Geology and Recovery Efficiency, 2003,10(4):14-15.
[16] Robin G,Jeanmichel P,Christine T M,et al .Random forests for big data[J]. Big Data Research 2017,9:28-46.
[17] Vigneau E, Courcoux P, Symoneauxr, et al . Random forests: a machine learning methodology to high-light the volatile organic compounds involved in olfactory perception[J]. Food Quality and Preference, 2018,68:135-145.
[18] Christoph B, Christian P, Marianr. Testing the optimality of inflation forecasts under flexible loss with random forests[J]. Economic Modelling, 2018,72:270-277.
[19] 侯贤沐,王付勇,宰芸,等. 基于机器学习和测井数据的碳酸盐岩孔隙度与渗透率预测[J]. 吉林大学学报( 地球科学版),2022,52(2): 644-653.
Hou Xianmu, Wang Fuyong, Zai Yun, et al .Prediction of carbonate porosity and permeability based on machine learning and logging data[J]. Journal of Jilin University(Earth Science Edition), 2022,52(2):644-653.
[20] 刘燊,刘啸奔,李睿,等. 基于机器学习的冻土区融沉变形管段识别方法[J]. 石油机械,2022,50(3):106-114.
Liu Shen, Liu Xiaoben, Li Rui, et al .Identification of thaw settlement deformation pipe section in frozen soil area based on machine learning[J]. China Petroleum Machinery, 2022,50(3): 106-114.
[21] 柴明锐,程丹,张昌民,等. 机器学习方法对砂砾岩岩屑成分的预测:以西北缘X723 井百口泉组为例[J]. 西安石油大学学报(自然科学版),2017,32(5):22-28.
Chai Mingrui, Cheng Dan, Zhang Changmin, et al .Prediction of debris composition in glutenite by machine learning method:a case study in Baikouquan Formation of Well X723 in the NW margin of Junggar Basin [J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2017,32(5):22-28. |