[1] 王瑞杰,王永康,马福建,等.页岩油地质工程一体化关键技术研究与应用:以鄂尔多斯盆地三叠系延长组长7段为例[J].中国石油勘探,2022,27(1):151-163.
Wang Ruijie, Wang Yongkang, Ma Fujian, et al. Research and application of key technologies of geology and engineering integration for shale oil development: a case study of Chang 7 member of the Triassic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2022,27(1):151-163.
[2] 付金华,喻建,徐黎明,等.鄂尔多斯盆地致密油勘探开发新进展及规模富集可开发主控因素[J].中国石油勘探,2015,20(5):9-19.
Fu Jinhua, Yu Jian,Xu Liming, et al. New progress in exploration and development of tight oil in Ordos Basin and main controlling factors of large-scale enrichment and exploitable capacity[J]. China Petroleum Exploration, 2015, 20(5):9-19.
[3] 冯张斌,马福建,陈波,等.鄂尔多斯盆地长7致密油地质工程一体化解决方案:针对科学布井和高效钻井[J].中国石油勘探,2020, 25(2):155-168.
Feng Zhangbin, Ma Fujian, Chen Bo, et al. A geology-engineering integration solution for tight oil exploration of the Chang-7 member, Yanchang Formation in the Ordos Basin- focusing on scientific well spacing and efficient drilling[J]. China Petroleum Exploration, 2020,25(2):155-168.
[4] 吴奇,梁兴,鲜成钢,等.地质—工程一体化高效开发中国南方海相页岩气[J].中国石油勘探,2015,20(4):1-23.
Wu Qi, Liang Xing, Xian Chenggang, et al. Geoscience-to-production integration ensures effective and efficient south China marine shale gas development[J]. China Petroleum Exploration, 2015,20(4):1-23.
[5] Li Guoxin, Xian Chenggang, Liu He. A“One Engine with Six Gears”system engineering methodology for the economic development
of unconventional oil and gas in China[J]. Engineering, 2022,18(11):105-115.
[6] 付金华,牛小兵,淡卫东,等.鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J].中国石油勘探,2019,24(5): 601-614.
Fu Jinhua, Niu Xiaobing, Dan Weidong, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang7 member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5):601-614.
[7] 王汇智,赵卫卫,何浩男,等.鄂尔多斯盆地陇东地区致密油储层特征研究:以鄂尔多斯盆地长7段为例[J].非常规油气,2019,6(2):46-55.
Wang Huizhi, Zhao Weiwei, He Haonan, et al. Characteristics of tight oil reserviors in Ordos Basin, a case study of C7 member in Longdong area[J]. Unconventional Oil & Gas, 2019,6(2):46-55.
[8] 邹才能,赵政璋,杨华,等.陆相湖盆深水砂质碎屑流成因机制与分布特征:以鄂尔多斯盆地为例[J].沉积学报,2009,27(6):1065-1075.
Zou Caineng, Zhao Zhengzhang, Yang Hua, et al. Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin[J]. Acta Sedimentologica Sinica, 2009,27(6): 1065-1075.
[9] 李相博,刘化清,张忠义,等.深水块状砂岩碎屑流成因的直接证据:“泥包砾”结构:以鄂尔多斯盆地上三叠统延长组研究为例[J].沉积学报,2014,32(4):42-51.
Li Xiangbo, Liu Huaqing, Zhang Zhongyi, et al.“Argillaceous parcel”structure: a direct evidence of debris flow origin of deep-water massive sandstone of Yanchang Formation,Upper Triassic, the Ordos Basin[J]. Acta Sedimentologica Sinica, 2014,32(4): 42-51.
[10] Shanmugam G, Lehtonen L R, Straume T, et al. Slump and debris flow dominated upper slope facies in the Cretaceous of the Norwegian and Northern North Seas (61°~67°N): implications for sand distribution[J]. AAPG Bulletin, 1994,78(6): 910-937.
[11] 赵文智,胡素云,汪泽成,等.鄂尔多斯盆地基底断裂在上三叠统延长组石油聚集中的控制作用[J].石油勘探与开发,2003,30(5): 13-17.
Zhao Wenzhi, Hu Suyun, Wang Zecheng, et al. The control of basement faults on Yanchang Formation hydrocarbon accumulations in Ordos Basin[J]. Petroleum Exploration and Development, 2003,30(5):13-17.
[12] 屈雪峰,赵中平,雷启鸿,等.鄂尔多斯盆地合水地区延长组裂缝发育特征及控制因素[J].物探与化探,2020,44(2):262-270.
Qu Xuefeng, Zhao Zhongping, Lei Qihong, et al. Characteristics and controlling factors of fracture development in the Yanchang Formation of the Heshui area of the Ordos Basin[J]. Geophysical and Chemical Exploration, 2020,44(2):262-270.
[13] 曾联波,李忠兴,史成恩,等.鄂尔多斯盆地上三叠统延长组特低渗透砂岩储层裂缝特征及成因[J].地质学报,2007,81(2):174-180.
Zeng Lianbo, Li Zhongxing, Shi Cheng’en, et al. Characteristics and origin of fractures in the extra low-permeability sandstone reservoirs of the Upper Triassie Yanchang Formation in the Ordos Basin[J]. Acta Geologica Sinica, 2007,81(2): 174-180.
[14] 曾联波,高春宇,漆家福,等.鄂尔多斯盆地陇东地区特低渗透砂岩储层裂缝分布规律及其渗流作用[J].中国科学D辑:地球科学,2008,38(增刊1):41-47.
Zeng Lianbo, Gao Chunyu, Qi Jiafu, et al. The distribution rules and seepage effect of fractures in the ultra-lowpermeability sandstone reservoir in East Gansu Province, Ordos Basin[J]. Science in China Series D: Earth Sciences, 2008,38(S1):41-47.
[15] 马润勇,朱浩平,张道法,等.鄂尔多斯盆地基底断裂及其现代活动性[J].地球科学与环境学报,2009,31(4):400-408.
Ma Runyong, Zhu Haoping, Zhang Daofa, et al. Basement faults and their recent activity in Ordos Basin[J]. Journal of Earth Sciences and Environment, 2009,31(4):400-408.
[16] 赵振宇,郭彦如,王艳,等.鄂尔多斯盆地构造演化及古地理特征研究进展[J].特种油气藏,2012,19(5):15-20.
Zhao Zhenyu, Guo Yanru, Wang Yan, et al. The study on structural evolution and paleo-geography in Ordos Basin[J]. Special Oil & Gas Reservior, 2012,19(5):15-20.
[17] 邸领军,张东阳,王宏科.鄂尔多斯盆地喜山期构造运动与油气成藏[J].石油学报,2003,24(2):34-37.
Di Lingjun, Zhang Dongyang, Wang Hongke. Himalayan tectonic movement and petroleum reservoir in Ordos Basin[J]. Acta Petrolei Sinica, 2003,24(2):34-37.
[18] Cheung P S Y, Heliot D. Workstation based fracture evaluation using borehole images and wireline logs[R]. New Orleans: at 65th Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 1990.
[19] Shang R Y, Tang D. Fracture pattern and associated aperture distrubution: example from the foothills, western Canada[R]. 46th Annual Logging Symposium, 2005.
[20] 张杰,李斐,姚宗惠,等.黄土塬宽方位三维地震技术及其在页岩油开发中的应用[R].西安:中国陆相页岩油勘探开发关键技术与管理研讨会,2023.
Zhang Jie, Li Fei, Yao Zonghui, et al. Wide azimuth 3D seismic technology in loess plateau and its application in shale oil development[R]. Xi’an: Seminar on Key Technologies and Management for Exploration and Development of Continental Shale Oil in China, 2023.
[21] Rodriguez A, Maldonado F. Evaluating pressure drawdown strategy for hydraulically fracture shale gas condensate producers[R]. SPE Oklahoma City Oil and Gas Symposium, Society of Petroleum Engineers, 2019.
[22] Lei Qihong, Ma Fujian, He Youan, et al. Geo-engineering approach application in lacustrine shale oil reservoirs with complex natural fracture[R]. Tokyo, Japan: SPE Japan HAHZ Workshop, 2023.
[23] Li Jie, Ma Fujian, Wang Leifei, et al. Hydraulic fracture propagation with complex natural fracture network in lacustrine shale oil reservoirs[R]. Baku, Azerbaijan: the SPE Caspian Technical Conference and Exhibition, 2023.
[24] Mei Qiliang, Ma Fujian, Lei Qihong, et al. Data and model base of customized hydraulic fracturing for continental shale oil[R]. Brisbane, Australia: the Asia Pacific Unconventional Resources Symposium, 2023.
[25] Chen Bo, Ma Fujian, Li Yanlu, et al. Geo-engineered performance in one of the largest tight oil multi-well pads in Asia[R]. Virtual: the SPE/AAPG/SEG Unconventional Resources Technology Conference, 2020.
[26] Xie J, Qiu K B, Zhong B, et al. Construction of a 3D geomechanical model for development of a shale gas reservoir in the Sichuan Basin[J]. SPE Drilling & Completion, 2018,33: 275-297.
[27] Byerlee J D. Friction of rocks[J]. Pure and Applied Geophysics, 1978,116:615-626.
[28] Zoback M D. Reservoir geomechanics[M]. New York: Cambridge University Press, 2010:125-126.
[29] Barton C A. Zoback M D, Moos D. Fluid flow along potentially active faults in crystalline rock[J]. Geology 1995,23: 683-686.
[30] Baihly J D, Malpani R, Edwards C, et al. Unlocking the shale mystery: how lateral measurements and well placement impact completions and resultant production[J]. Society of Petroleum Engineers, 2010:138427.
[31] Wang X, Fei S, Zhu L, et al. Geology quality: case study of improving multistage fracturing and completion with quantitative geology considerations[R]. Unconventional Resources Technology Conference, 2020.
|