中国石油勘探 ›› 2025, Vol. 30 ›› Issue (5): 111-125.DOI: 10.3969/j.issn.1672-7703.2025.05.009
张洪
出版日期:
2025-09-15
发布日期:
2025-09-14
作者简介:
张洪(1972-),男,湖北洪湖人,博士,2011年毕业于中国矿业大学(北京),高级工程师,现主要从事油气勘探方面的工作。地址:北京市朝阳区惠新东街甲6号,邮政编码:100029。
基金资助:
Zhang Hong
Online:
2025-09-15
Published:
2025-09-14
摘要: 埃迪卡拉纪是古海洋与古气候演化的关键时期,其广泛分布的纤维状白云石为重建该阶段海洋化学特征提供了重要证据。为此,本文综述了纤维状白云石的成因类型和判别依据,重点探讨了埃迪卡拉纪纤维状白云石在中国的分布、成因机制及其古环境意义。岩石学特征、晶体光学性质及地球化学组成等多维属性可作为识别其成因的重要依据。原生成因纤维状白云石多呈纤维状结构,具正延性光学特征,常发育清晰的生长环带;而次生交代成因则表现为针状、葡萄状形态或方形终端,具负延性光学特征,且生长环带欠发育。此外,微量元素含量在判别白云石成因类型中具有一定的潜力。中国扬子板块埃迪卡拉系底部(陡一段)和顶部(灯二段和灯四段)及塔里木盆地奇格布拉克组顶部发育多种类型的纤维状白云石,包括板状白云石、束状- 负延性白云石、放射状- 负延性白云石、束状-正延性白云石与放射状- 正延性白云石。前三类白云石主要为次生交代文石或高镁方解石后的产物,而束状- 正延性与放射状-正延性白云石则更可能为自古海水或海相孔隙水中直接沉淀形成的原生白云石。埃迪卡拉纪海水具有高Mg/Ca比值、高碱度和低硫酸根浓度的特征,促使文石与高镁方解石母质类纤维状矿物沉淀。蒸发作用进一步提升Mg/Ca比值,缺氧环境下硫酸盐还原菌的代谢活动则释放Mg2+、提高pH 与碱度,有效克服沉淀障碍,促进原生纤维状白云石的形成。中国埃迪卡拉纪纤维状白云石普遍记录了同期海水或海相孔隙水的地球化学特征,部分样品亦显示热液流体的介入。其地球化学信号能够有效揭示古海洋氧化还原状态、流体来源及其时空演化过程,为重建前寒武纪海洋化学体系及评估其对早期生命演化的环境约束机制,提供了重要的地质证据。
中图分类号:
张洪. 中国埃迪卡拉纪纤维状白云石研究进展[J]. 中国石油勘探, 2025, 30(5): 111-125.
Zhang Hong. The research progress of the Ediacaran fibrous dolomite in China[J]. China Petroleum Exploration, 2025, 30(5): 111-125.
[1] Land, L. S. Failure to Precipitate Dolomite at 25 ° C from Dilute Solution Despite 1000-Fold Oversaturation after 32 Years. Aquatic Geochemistry, 1998, 4(3): 361-368. [2] Warren, J. Dolomite: occurrence, evolution and economically important associations. Earth-Science Reviews, 2000, 52(1-3):1-81. [3] Hood, A. V., Wallace, M. W. Neoproterozoic marine carbonates and their paleoceanographic significance. Global and Planetary Change, 2018, 160: 28-45. [4] Canfield, D. E., Farquhar, J. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proceedings of the National Academy of Sciences, 2009, 106(20): 8123-8127. [5] Meister, P. Two opposing effects of sulfate reduction on carbonate precipitation in normal marine, hypersaline, and alkaline environments. Geology, 2013, 41(4): 499-502. [6] 由雪莲, 孙枢, 朱井泉, 刘玲, 何凯. 微生物白云岩模式研究进展. 地学前缘, 2011, 18(4): 52-64. [7] Petrash, D. A., Bialik, O. M., Bontognali, T. R. R., Vasconcelos, C., Roberts, J. A., McKenzie, J. A., Konhauser, K. O. Microbially catalyzed dolomite formation: From near-surface to burial. Earth-Science Reviews, 2017,171: 558-582. [8] Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A., Demicco, R. V. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions. Science, 2001, 294(5544), 1086-1088. [9]álvaro, J. J., & Debrenne, F. (2010). The Great Atlasian Reef complex: an early Cambrian subtropical fringing belt that bordered West Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology, 294(3-4), 120-132. [10] Mei, M., Latif, K., Mei, C., Gao, J., & Meng, Q. (2020). Thrombolitic clots dominated by filamentous cyanobacteria and crusts of radio-fibrous calcite in the Furongian Changshan Formation, North China. Sedimentary geology, 395, 105540. [11] Lee, J. H., Chen, J., & Woo, J. (2015). The earliest Phanerozoic carbonate hardground (Cambrian Stage 5, Series 3): Implications to the paleoseawater chemistry and early adaptation of hardground fauna. Palaeogeography, Palaeoclimatology, Palaeoecology, 440, 172-179. [12] de Wet, C. B., Frey, H. M., Gaswirth, S. B., Mora, C. I., Rahnis, M., & Bruno, C. R. (2004). Origin of meterscale submarine cavities and herringbone calcite cement in a Cambrian microbial reef, Ledger Formation (USA). Journal of Sedimentary Research, 74(6), 914-923. [13] Whittaker, S. G., James, N. P., & Kyser, T. K. (1994). Geochemistry of synsedimentary cements in Early Cambrian reefs. Geochimica et Cosmochimica Acta, 58(24), 5567-5577. [14] James, N. P., & Klappa, C. F. (1983). Petrogenesis of early Cambrian reef limestones, Labrador, Canada. Journal of Sedimentary Research, 53(4), 1051-1096. [15] Pratt, B. R. (1988). Deep-water Girvanella-Epiphyton reef on a mid-Cambrian continental slope, Rockslide Formation, Mackenzie Mountains, Northwest Territories. 161-164. [16] Pratt, B. R. (2002). Tepees in peritidal carbonates: origin via earthquake-induced deformation, with example from the Middle Cambrian of western Canada. Sedimentary Geology, 153(3-4),57-64. [17] James, N. P., & Gravestock, D. I. (1990). Lower Cambrian shelf and shelf margin buildups, Flinders ranges, South Australia 1. Sedimentology, 37(3), 455-480. [18] Clarke, J. D. A. (1990). An Early Cambrian carbonate platform near Wilkawillina Gorge, South Australia. Australian Journal of Earth Sciences, 37(4), 471-483. [19] Kim, J. C., & Lee, Y. I. (1996). Marine diagenesis of Lower Ordovician carbonate sediments (Dumugol Formation), Korea: cementation in a calcite sea. Sedimentary Geology, 105(3-4),241-257. [20] Kim, Y., & Lee, Y. I. (2003). Radiaxial fibrous calcites as low‐magnesian calcite cement precipitated in a marinemeteoric mixing zone. Sedimentology, 50(4), 731-742. [20] Brett, C. E., & Brookfield, M. E. (1984). Morphology, faunas and genesis of Ordovician hardgrounds from southern Ontario, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 46(4), 233-290. [22] Kr?ger, B., Ebbestad, J. O. R., & Lehnert, O. (2016). Accretionary mechanisms and temporal sequence of formation of the Boda Limestone mud-mounds (Upper Ordovician), Siljan District, Sweden. Journal of Sedimentary Research, 86(4), 363-379. [23] Tobin, K. J., & Walker, K. R. (1996). Ordovician low‐to intermediate‐Mg calcite marine cements from Sweden: marine alteration and implications for oxygen isotopes in Ordovician seawater. Sedimentology, 43(4), 719-735. [24] M?ller, N. K., & Kvingan, K. (1988). The genesis of nodular limestones in the Ordovician and Silurian of the Oslo Region (Norway). Sedimentology, 35(3), 405-420. [25] Tobin, K. J., Walker, K. R., Steinhauff, D. M., & Mora, C. I. (1996). Fibrous calcite from the Ordovician of Tennessee: preservation of marine oxygen isotopic composition and its impl ications. Sedimentology, 43(2), 235-251. [26] Lee, J. H., & Lee, D. J. (2021). Mid–Late Ordovician tetradiid–calcimicrobial–cement reef: A new, peculiar reefbuilding consortium recording global cooling. Global and Planetary Change, 200, 103462. [27] Hu, Y., Cai, C., Li, Y., Zhou, R., Lu, F., Hu, J., Ren,C., Zhou, Y., Immenhauser, A. (2022). Upper Ediacaran fibrous dolomite versus Ordovician fibrous calcite cement: Origin and significance as a paleoenvironmental archive. Chemical Geology, 609, 121065. [28] Noble, J. P. A. (1988). The Late Silurian LaPlante Reefs of northern New Brunswick, Canada. 344-349. [29] Neuser, R. D., & Richter, D. K. (2007). Non-marine radiaxial fibrous calcites—examples of speleothems proved by electron backscatter diffraction. Sedimentary Geology, 194(3-4),149-154. [30] Kendall, A. C. (1977). Fascicular-optic calcite; a replacement of bundled acicular carbonate cements. Journal of Sedimentary Research, 47(3), 1056-1062. [31] Krebs, W. (1969). Early void‐filling cementation in Devonian fore‐reef limestones (Germany). Sedimentology, 12(3‐4), 279-299. [32] Kendall, A. C., & Tucker, M. E. (1971). Radiaxial fibrous calcite as a replacement after syn-sedimentary cement. Nature Physical Science, 232(29), 62-63. [33] Kendall, A. C. (1985). Radiaxial fibrous calcite: a reappraisal.https://doi.org/10.2110/pec.85.36.0059. [34] Dickson, J. A. D. (1993). Crystal growth diagrams as an aid to interpreting the fabrics of calcite aggregates. Journal of Sedimentary Research, 63(1), 1-17. [35] Lindholm, R. C. (1974). Fabric and chemistry of pore filling calcite in septarian veins; models for limestone cementation. Journal of Sedimentary Research, 44(2), 428-440. [36] Carpenter, S. J., Lohmann, K. C., Holden, P., Walter, L. M., Huston, T. J., & Halliday, A. N. (1991). δ18O values, 87Sr/86Sr and Sr/Mg ratios of Late Devonian abiotic marine calcite: Implications for the composition of ancient seawater. Geochimica et Cosmochimica Acta, 55(7). [37] MacKenzie, W. S. (1972). Fibrous calcite, a Middle Devonian geologic marker, with stratigraphic significance, District of Mackenzie, Northwest Territories. Canadian Journal of Earth Sciences, 9(11), 1431-1440. [38] Cavalazzi, B., Barbieri, R., & Ori, G.G. (2007). Chemosynthetic microbialites in the Devonian carbonate mounds of Hamar Laghdad (Anti-Atlas, Morocco). Sedimentary Geology, 200(1-2), 73-88. [39] Denayer, J. (2023). From mud to limestone: Birth and growth of a giant reef in the Eifelian (Middle Devonian) of Belgium. Palaeogeography, Palaeoclimatology, Palaeoecology, 627, 111748. [40] Antoshkina, A. I. (2022, September). Calcite Microspherulites as a Reflection of the Relationship Between Abiotic Processes and Biological Mechanisms. In International Symposium Biogenic-abiogenic interactions in natural and anthropogenic systems (pp. 167-182). Cham: Springer International Publishing. [41] Hurley, N. F., & Lohmann, K. C. (1989). Diagenesis of Devonian reefal carbonates in the Oscar Range, Canning Basin, Western Australia. Journal of Sedimentary Research, 59(1),127-146. [42] Vander Kooij, B., Immenhauser, A.,Steuber, T., Bahamonde Rionda, J. R., & Merino Tome, O. (2010). Controlling factors of volumetrically important marine carbonate cementation in deep slope settings. Sedimentology, 57(6), 1491-1525. [43] Chenrai, P., Assawincharoenkij, T., Warren, J., Sanguankaew, S., Meepring, S., Laitrakull, K., & Cartwright,I. (2022). The occurrence of bedding-parallel fibrous calcite veins in permian siliciclastic and carbonate rocks in Central Thailand. Frontiers in Earth Science, 9, 781782. [44] Davies, G.R., and Nassichuk, W.W. (1990). Submarine cements and fabrics in Carboniferous to Lower Permian, reefal shelf margin and slope carbonates, northwestern Ellesmere Island, Canadian Arctic Archipelago. Bull. Geol. Surv.Canada, 399, 1-77. [45] Kendall, A. C., & Tucker, M. E. (1973). Radiaxial fibrous calcite: a replacement after acicular carbonate. Sedimentology,20(3), 365-389. [46] Kirkham, A., & Tucker, M. E. (2018). Thrombolites, spherulites and fibrous crusts (Holkerian, Purbeckian, Aptian): Context, fabrics and origins. Sedimentary Geology, 374, 69-84. [47] Wright, V. P. (1984). The significance of needle‐fibre calcite in a Lower Carboniferous palaeosol. Geological Journal, 19(1),23-32. [48] Mazzullo, S. J., & Cys, J. M. (1979). Marine aragonite seafloor growths and cements in Permian phylloid algal mounds, Sacramento Mountains, New Mexico. Journal of Sedimentary Research, 49(3), 917-936. [49] Stanton Jr, R. J., & Pray, L. C. (2004). Skeletalcarbonate Neptunian dikes of the capitan reef: permian, Guadalupe Mountains, Texas, USA. Journal of Sedimentary Research, 74(6), 805-816. [50] Vennin, E. (2007). Coelobiontic communities in neptunian fissures of synsedimentary tectonic origin in Permian reef, southern Urals, Russia. https://doi.org/10.1144/GSL.SP.2007.275.01.14. [51] Rahnis, M. A., & Kirkland, B. L. (1999). Distribution, petrography and geochemical characterization of radiaxial calcite and associated diagenetic events in the Capitan Formation, west Texas and New Mexico. https://doi.org/10.2110/pec.99.65.0176. [52] Kershaw, S., & Guo, L. (2016). Beef and cone-in-cone calcite fibrous cements associated with the end-Permian and end-Triassic mass extinctions: Reassessment of processes of formation. Journal of Palaeogeography, 5(1), 28-42. [53] Halley, R. B., & Scholle, P. A. (1985). Radiaxial fibrous calcite as early-burial, open-system cement: isotopic evidence from Permian of China. AAPG Bulletin, 69(2), 261-261. [54] Liu, H., & Rigby, J. K. (1992). Diagenesis of the Upper Permian Jiantianba Reef, West Hubei, China. Journal of Sedimentary Research, 62(3). [55] Satterley, A. K., Marshall, J. D., & Fairchild, I. J. (1994).Diagenesis of an Upper Triassic reef complex, Wilde Kirche, Northern Calcareous Alps, Austria. Sedimentology, 41(5), 935-950. [56] Christ, N., Immenhauser, A., Amour, F., Mutti, M.,Preston, R., Whitaker, F. F., ... & Agar, S. M.(2012). Triassic Latemar cycle tops—Subaerial exposure of platform carbonates under tropical arid climate. Sedimentary Geology, 265, 1-29. [57] Russo, F., Mastandrea, A., Stefani, M., & Neri, C. (2000). Carbonate facies dominated by syndepositional cements: a key component of Middle Triassic platforms. The Marmolada case history (Dolomites, Italy). Facies, 42(1), 211-226. [58] Al-Aasm, I. S., Coniglio, M., & Desrochers, A. (1995). Formation of complex fibrous calcite veins in Upper Triassic strata of Wrangellia Terrain, British Columbia, Canada. Sedimentary Geology, 100(1-4), 83-95. [59] Liu, G., Liu, X., Ma, X., Ma, S., Wang, X., Li, S., Shi, Z., & Wang, Y. (2023). Genesis of Fibrous Calcite in the Chang 7 Member of the Yanchang Formation, Ordos Basin, China. Acta Geologica Sinica‐English Edition, 97(5), 1490-1502. [60] Wang, G., Hao, F., Chang, X., Lan, C., Li, P., & Zou, H. (2017). Quantitative analyses of porosity evolution in tight grainstones: A case study of the Triassic Feixianguan formation in the Jiannan gas field, Sichuan Basin, China. Marine and Petroleum Geology, 86, 259-267. [61] Payne, J. L., Lehrmann, D. J., Christensen, S., Wei, J., & Knoll, A. H. (2006). Environmental and biological controls on the initiation and growth of a Middle Triassic (Anisian) reef complex on the Great Bank of Guizhou, Guizhou Province, China. Palaios, 21(4), 325-343. [62] Hips, K. (2022). Sedimentary aspects of the onset of Middle Triassic continental rifting in the western end of Neotethys; inferences from the Silica and Torna Nappes, NE Hungary: a review. Facies, 68(3), 8. [63] Aubrecht, R., Józsa, ?., Pla?ienka, D., & Wierzbowski, H. (2022). Mid-Cretaceous turnover in the Oravic segment of the Pieniny Klippen Belt (Western and Eastern Carpathians): New data and synthesis. Cretaceous Research, 140, 105323. [64] Purser,B.H. (1969). Syn‐sedimentary marine lithification of Middle Jurassic limestones in the Paris Basin. Sedimentology, 12(3-4), 205-230. [65] Gray, A. F., & Adams, A. E. (1995). Sheet voids and radiaxial fibrous calcite cement fills from Upper Jurassic beachrock, Calcaires Blancsde Provence, southeast France. Carbonates and Evaporites, 10(2), 252-260. [66] Wilkinson, B. H., Smith, A. L., & Lohmann, K. C. (1985). Sparry calcite marine cement in Upper Jurassic limestones of southeastern Wyoming. [67] Aissaoui, D. M., & Purser, B. H. (1983). Nature and origins of internal sediments in Jurassic limestones of Burgundy (Franc) and Fnoud (Algeria). Sedimentology, 30(2), 273-283. [68] Wilson, R. C. L. (1967). Diagenetic carbonate fabric variations in Jurassic limestones of southern England. Proceedings of the Geologists’ Association, 78(4), 535-554. [69] Reinhold, C. (1998). Ancient helictites and the formation of vadose crystal silt in Upper Jurassic carbonates (Southern Germany). Journal of sedimentary research, 68(3), 378-390. [70] Koch, R., & Ogorelec, B. (1990). Biogenic Constituents, Cement Types, and Sedimentary Fabrics: Their Interrelations in Lower Cretaceous (Valanginian to Hauterivian) Peritidal Carbonate Sediments (Trnovo, NW Slovenia). In Sediments and Environmental Geochemistry: Selected Aspects and Case Histories (pp. 95-123). Berlin, Heidelberg: Springer Berlin Heidelberg. [71] Wilson, P. A., & Dickson, A. D. (1996). Radiaxial calcite: Alteration product of and petrographic proxy for magnesian calcite marine cement. Geology, 24(10), 945-948. [72] Nehza, O., & Woo, K. S. (2006). The effect of subaerial exposure on the morphology and microstructure of stromatolites in the Cretaceous Sinyangdong Formation, Gyeongsang Supergroup, Korea 1. Sedimentology, 53(5), 1121-1133. [73] Immenhauser, A., Van Der Kooij, B., Van Vliet, A., Schlager, W., & Scott, R. W. (2001). An ocean-facing Aptian-Albian carbonate margin, Oman. Sedimentology, 48(6),1187-1207. [74] Scheffler, F., Immenhauser, A., Pourteau, A., Natalicchio, M., Candan, O., & Oberh?nsli, R. (2019). A lost Tethyan evaporitic basin: Evidence from a Cretaceous hemipelagic metaselenite-red chert association in the Eastern Mediterranean realm. Sedimentology, 66(7), 2627-2660. [75] Woo, K. S., Anderson, T. F., & Sandberg, P. A. (1993). Diagenesis of skeletal and nonskeletal components of mid-Cretaceous limestones. Journal of Sedimentary Research, 63(1),18-32. [76] Carvalho, A. M. A., Hamon, Y., De Souza Jr, O. G., Carramal, N. G., & Collard, N. (2022). Facies and diagenesis distribution in an Aptian pre-salt carbonate reservoir of the Santos Basin, offshore Brazil: a comprehensive quantitative approach. Marine and Petroleum Geology, 141, 105708. [77] Aubrecht, R., Schl?gl, J., Krobicki, M. I. C. H. A. ?., Wierzbowski, H., Matyja, B. A., & Wierzbowski, A. (2009). Middle Jurassic stromatactis mud-mounds in the Pieniny Klippen Belt (Carpathians)—a possible clue to the origin of stromatactis. Sedimentary Geology, 213(3-4), 97-112. [78] Aissaoui, D. M. (1988). Magnesian calcite cements and their diagenesis: dissolution and dolomitization, Mururoa Atoll. Sedimentology, 35(5), 821-841. [79] Saller, A. H. (1986). Radiaxial calcite in lower Miocene strata, subsurface Enewetak Atoll. Journal of Sedimentary Research, 56(6), 743-762. [80] Nicolaides, S., & Wallace, M. W. (1997). Submarine cementation and subaerial exposure in Oligo-Miocene temperate carbonates, Torquay Basin, Australia. Journal of Sedimentary Research, 67(3), 397-410. [81] Lu, Y., Mihailova, B., Malcherek, T., Paulmann, C., Smrzka, D., Zwicker, J., Lin, Z., Bohrmann, G., Peckmann, J. (2024). Role of bottom water chemistry in the formation of fibrous magnesium calcite at methane seeps in the Black Sea. Sedimentology, 71(4), 1193-1213. [82] Richter, D. K., & Rieche lmann, D. F. C. (2008). Late Pleistocene cryogenic calcite spherolites from the Malachitdom Cave (NE Rhenish Slate Mountains, Germany): origin, unusual internal structure and stable CO isotope composition. International Journal of Speleology, 37(2), 119-129. [83] Assereto, R., & Folk, R. L. (1980). Diagenetic fabrics of aragonite, calcite, and dolomite in an ancient peritidal-spelean environment; Triassic Calcare rosso, Lombardia, Italy. Journal of Sedimentary Research, 50(2), 371-394. [84] Hu, Y., Cai, C., Sun, P., Zhang, H., Liu, Z., Li, Y., Wang Q., Tang, Y., Immenhauser, A. Palaeo-environmental significance of fibrous carbonate cement in Marinoan cap carbonates. Marine and Petroleum Geology, 2023, 106392. doi:10.1016/j.marpetgeo.2023.106392. [85] 钱一雄, 何治亮, 李慧莉, 陈跃, 金婷, 沙旭光, 李洪全. 塔里木盆地北部上震旦统葡萄状白云岩的发现及成因探讨. 古地理学报,2017, 19(2): 197-210. [86] Tang, P., Chen, D., Wang, Y., Ding, Y., El-Shafeiy, M., Yang, B. Diagenesis of microbialite-dominated carbonates in the Upper Ediacaran Qigebrak Formation, NW Tarim Basin, China: Implications for reservoir development. Marine and Petroleum Geology, 2022, doi: 10.1016/j.marpetgeo.2021.105476. [87] Ding, Y., Chen, D., Zhou, X., Guo, C., Huang, T., Zhang, G. Cavity-filling dolomite speleothems and submarine cements in the Ediacaran Dengying microbialites, South China: Responses to high-frequency sea-level fluctuations in an‘aragonite-dolomite sea’. Sedimentology, 2019, 66(6): 2511-2537. [88] Cui, H., Xiao, S., Cai, Y., Peek, S., Plummer, R. E., Kaufman, A. J. Sedimentology and chemostratigraphy of the terminal Ediacaran Dengying Formation at the Gaojiashan section, South China. Geological Magazine, 2019, 156(11):1924-1948. [89] Wang, J., He, Z., Zhu, D., Liu, Q., Ding, Q., Li, S., Zhang, D. Petrological and geochemical characteristics of the botryoidal dolomite of Dengying Formation in the Yangtze Craton, South China: Constraints on terminal Ediacaran “dolomite seas”. Sedimentary Geology, 2020, 406,doi:10.1016/j.sedgeo.2020.105722. [90] Hu, Y., Cai, C., Liu, D., Pederson, C. L., Jiang, L., Shen, A., Immenhauser, A. Formation, diagenesis and palaeoenvironmental significance of upper Ediacaran fibrous dolomite cements. Sedimentology, 2020, 67(2): 1161-1187. [91] Zhao, Y. Y., Zhao, M. Y., Li, S. Z. Evidences of hydrothermal fluids recorded in microfacies of the Ediacaran cap dolostone: Geochemical implications in South China. Precambrian Research, 2018, 306: 1-21. [92] Jiang, G., Kennedy, M. J., Christie-Blick, N., Wu, H.,Zhang, S. Stratigraphy, sedimentary structures, and textures of the late Neoproterozoic Doushantuo cap carbonate in South China. Journal of Sedimentary Research, 2006, 76(7): 978-995. [93] Wood, R. A., Zhuravlev, A. Y., Sukhov, S. S., Zhu, M., Zhao, F. Demise of Ediacaran dolomitic seas marks widespread biomineralization on the Siberian Platform. Geology, 2017,45(1): 27-30. [94] Kennedy, M. J. (1996). Stratigraphy, sedimentology, and isotopic geochemistry of Australian Neoproterozoic postglacial cap dolostones; deglaciation, delta 13 C excursions, and carbonate precipitation. Journal of sedimentary Research, 66(6),1050-1064. [95] Richter, D. K., Heinrich, F., Geske, A., Neuser, R. D., Gies, H., Immenhauser, A. First description of Phanerozoic radiaxial fibrous dolomite. Sedimentary Geology, 2014, 304(1):1-10. [96] Wallace, M. W., Shuster, A., Greig, A., Planavsky,N. J., & Reed, C. P. (2017). Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth and Planetary Science Letters, 466, 12-19. [97] 王家生, 王舟, 胡军, 陈洪仁, & 林杞. (2012). 华南新元古代“盖帽” 碳酸盐岩中甲烷渗漏事件的综合识别特征. 地球科学—中国地质大学学报, 37, 14-22. [98] 林孝先, 彭军, 闫建平, 侯中健. 四川盆地震旦系灯影组葡萄状白云岩成因讨论. 古地理学报, 2015, 17(6): 755-770. [99] 李文奇, 刘汇川, 李平平, 倪智勇, & 王艺壬. (2023). 四川灯影组白云石化流体多样化特征及白云岩差异性成因. 地球科学, 48(9),3360-3377. [100] 施泽进, 梁平, 王勇, 胡修权, 田亚铭, & 王长城. (2011). 川东南地区灯影组葡萄石地球化学特征及成因分析. 岩石学报, 27(8),2263-2271. [101] Hu, A., Shen, A., Wang, Y., Pan, L., Wang, Y., Hao,Y., & Zhang, J. (2019). The geochemical characteristics and origin analysis of the botryoidal dolomite in the Upper Sinian Dengying Formation in the Sichuan Basin, China. Journal of Natural Gas Geoscience, 4(2), 93-100. [102] 钱一雄, 冯菊芳, 何治亮, 张克银, 金婷, 董少峰, 尤东华, 张永东. (2017). 从岩石学及微区同位素探讨四川盆地灯影组皮壳- 葡萄状白云石成因. 石油与天然气地质, 38(4), 665-676. [103] Zhai, X., Luo, P., Gu, Z., Jiang, H., Zhang, B., Wang,Z., Wang, T., & Wu, S. (2020). Microbial mineralization of botryoidal laminations in the Upper Ediacaran dolostones,Western Yangtze Platform, SW China. Journal of Asian Earth Sciences, 195, 104334. [104] Shuster, A. M., Wallace, M. W., van Smeerdijk Hood, A., & Jiang, G. (2018). The Tonian Beck Spring Dolomite: Marine dolomitization in a shallow, anoxic sea. Sedimentary Geology, 368, 83-104. [105] Tucker, M. E. Precambrian dolomites: Petrographie and isotopic evidence that they differ from Phanerozoic dolomites. Geology, 1982, 10: 7-12. [106] Hood, A. V., Wallace, M.W., Drysdale, R. N. Neoproterozoic aragonite-dolomite seas? Widespread marine dolomite precipitation in Cryogenian reef complexes. Geology,2011, 39(9): 871-874. [107] Christ, N., Immenhauser, A., Wood, R.A. et al. Petrography and environmental controls on the formation of Phanerozoic marine carbonate hardgrounds[J]. Earth-Science Reviews, 2015, 151: 176-226. [108] Hood, A. V., Wallace, M. W. Extreme ocean anoxia during the Late Cryogenian recorded in reefal carbonates of Southern Australia. Precambrian Research, 2015, 261: 96-111. [109] Veizer, J. Trace elements and isotopes in sedimentary carbonates[J]. Reviews in Mineralogy and Geochemistry, 1983,11(1): 265-299. [110] Swart, P.K. The geochemistry of carbonate diagenesis: The past, present and future[J]. Sedimentology, 2015, 62(5): 1233-1304. [111] Wassenburg, J. A., Scholz, D., Jochum, K. P., Cheng,H., Oster, J., Immenhauser, A., Richter, D., Hager, T., Jamieson, R., Baldini, J., Haffmann, D., Breitenbach, S. F.M. (2016). Determination of aragonite trace element distribution coefficients from speleothem calcite-aragonite transitions.Geochimica et Cosmochimica Acta, 190, 347-367. [112] 罗青云, 王剑, 杜秋定, 王铜山, 付修根, 周刚, 李秋芬, 韦恒叶, 沈利军, 和源, 王永生. (2024). 川北地区灯影组四段白云岩成岩演化对优质储层的控制作用. 沉积学报, 42(6), 2174-2190. [113] Tucker, M., & Marshall, J. (2004) . Diagenesis and geochemistry of Upper Muschelkalk (Triassic) buildups and associated facies in Catalonia (NE Spain): a paper dedicated to Francesc Calvet. Geologica Acta: an international earth science journal, 2(4), 257-269. [114] Tucker, M. E., Wright, V.P. 2009. Carbonate sedimentology. John Wiley & Sons. [115] Zhao, D., Tan, X., Hu, G., Wang, L., Wang, X., Qiao, Z., Tang, H. (2021). Characteristics and primary mineralogy of fibrous marine dolomite cements in the end-Ediacaran Dengying Formation, South China: Implications for aragonite-dolomite seas. Palaeogeography, Palaeoclimatology, Palaeoecology, 581,110635. [116] Jiang, L., Shen, A., Wang, Z., Hu, A., Wang, Y., Luo, X., Liang, F., Azmy, K., Pan, L. (2022). U-Pb geochronology and clumped isotope thermometry study of Neoproterozoic dolomites from China. Sedimentology, 69(7),2925-2945. [117] Liu, E., Yan, D., Zhao, J. X., Wang, J., Feng, Y.,Zhong, L., Jiang, H., Shen, N., Zhan, J. (2025). Spatial U-Pb age distribution in botryoidal dolomite in the terminal Ediacaran Dengying Formation, South China: Constraints on “dolomite seas” and formation process. Precambrian Research, 417, 107636. [118] 胡安平, 沈安江, 陈亚娜, 张建勇, 梁峰, 王永生. 基于U-Pb同位素年龄和团簇同位素(Δ47) 温度约束的四川盆地震旦系灯影组构造—埋藏史重建[J]. 石油实验地质, 2021, 43(5): 896-905. [119] 倪智勇, 赵建新, 俸月星, 周玮, 杨程宇, 刘汇川, 邵钢钢, 罗冰. 2024. 川中地区震旦系“葡萄花边”白云岩的形成时代与成因.岩石学报, 40(1): 282-294. [120] Su, A., Chen, H., Feng, Y. X., Zhao, J. X., Wang, Z., Hu, M., Jiang, H., Nguyen, A. D. In situ U-Pb dating and geochemical characterization of multi-stage dolomite cementation in the Ediacaran Dengying Formation, Central Sichuan Basin, China: Constraints on diagenetic, hydrothermal and paleo-oil filling events. Precambrian Research, 2022, 368, doi:10.1016/j.precamres.2021.106481. [121] 陈旭东, 许启鲁, 郝芳, 陈永权, 易艳, 胡方杰, 王晓雪, 田金强, 王广伟, 2023. 塔里木盆地塔北地区上震旦统奇格布拉克组白云岩储层形成与成岩演化, 中国科学: 地球科学, 53, 2348-2369。 [122] 杨翰轩, 胡安平, 郑剑锋, 梁峰, 罗宪婴, 俸月星, & 沈安江.(2020). 面扫描和定年技术在古老碳酸盐岩储集层研究中的应用. 石油勘探与开发, 47(5), 935. [123] 沈安江, 胡安平, 郑剑锋, 梁峰, 王永生, 2021. 基于 U-Pb 同位素年龄和团簇同位素(Δ47) 温度约束的构造- 埋藏史重建——以塔里木盆地阿克苏地区震旦系奇格布拉克组为例[J]. 海相油气地质,26(3):1-11. [124] Balthasar, U., Cusack,M. Aragonite-calciteseas- -Quantifying the gray area[J]. Geology, 2015, 43(2): 99-102. [125] Zhang, P., Huang, K. J., Luo, M., Cai, Y., & Bao, Z. (2022). Constraining the terminal Ediacaran seawater chemistry by Mg isotopes in dolostones from the Yangtze Platform, South China. Precambrian Research, 377, 106700. [126] Xiong, Y., Wood, R., & Pichevin, L. (2023). The record of sea water chemistry evolution during the Ediacaran–Cambrian from early marine cements. The Depositional Record, 9(3),508-525. [127] Porter, S.M. Calcite and aragonite seas and the de novo acquisition of carbonate skeletons[J]. Geobiology, 2010, 8(4):256-77. [128] Meng, F., Ni, P., Schiffbauer, J. D., Yuan, X., Zhou, C., Wang, Y., & Xia, M. (2011). Ediacaran seawater temperature: Evidence from inclusions of Sinian halite. Precambrian Research, 184(1-4), 63-69. [129] Spence, G.H., Le Heron, D.P., Fairchild, I.J. Sedimentological perspectives on climatic, atmospheric and environmental change in the Neoproterozoic Era[J]. Sedimentology, 2016, 63(2): 253-306. [130] 赵东方, 谭秀成, 罗冰, 王小芳, 乔占峰, & 罗思聪. (2022).微生物诱导白云石沉淀研究进展及面临的挑战. 沉积学报, 40(2):335-349. [131] Zhang, F., Xu, H., Konishi, H., Kemp, J. M., Roden, E. E., & Shen, Z. (2012). Dissolved sulfide-catalyzed precipitation of disordered dolomite: Implications for the formation mechanism of sedimentary dolomite. Geochimica et Cosmochimica Acta, 97, 148-165. [132] Lyons, T. W., Reinhard, C. T., & Planavsky, N. J. (2014). The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506(7488), 307-315. [133] 赵坤, 满玲, 贺然, 李松倬, 祝圣贤, & 郎咸国. (2023). 川东北地区晚埃迪卡拉纪灯影期海水氧化还原环境 重建. 沉积学报, 41(1), 183-195. [134] Li, C., Love, G. D., Lyons, T. W., Fike, D. A., Sessions, A. L., & Chu, X. (2010). A stratified redox model for the Ediacaran ocean. Science, 328(5974), 80-83. [135] Halverson, G. P., & Hurtgen, M. T. (2007). Ediacaran growth of the marine sulfate reservoir. Earth and Planetary Science Letters, 263(1-2), 32-44. [136] Coleman, M.L., Raiswell, R. Carbon, oxygen and sulphur isotope variations in concretions from the Upper Lias of N.E. England[J]. Geochim. Cosmochim. Acta, 1981, 45: 329-340. [137] Vasconcelos, C., Mckenzie, J.A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil)[J]. journal of Sedimentary Research, 1997, 67: 378-390. [138] Gránásy, L., Pusztai, T., Tegze, G., Warren, J.A.,&Douglas, J.F. (2005). Growth and form of spherulites. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 72(1), 011605. [139] Liu, D., Chen, T., Dai, Z., Papineau, D., Qiu, X., Wang, H., & Benzerara, K. (2024). A non-classical crystallization mechanism of microbially-induced disordered dolomite. Geochimica et Cosmochimica Acta, 381, 198-209. [140] Warthmann, R., Van Lith, Y., Vasconcelos, C., McKenzie, J. A., & Karpoff, A. M. (2000). Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28(12),1091-1094. [141] Lu, Y., Paulmann, C., Mihailova, B., Malcherek, T., Birgel, D., López Correa, M., Lin, Z., Lu, L., Miker, Y., Peckmann, J. (2023). Fibrous dolomite formation at a Miocene methane seep may reflect Neoproterozoic aragonite-dolomite sea conditions. Communications Earth & Environment, 4(1), 346. [142] Ye, H., Yang, T., Zhu, G.R., Jiang, S.Y., Wu, L.S., 2016. Pore water geochemistry in shallow sediments from the northeastern continental slope of the South China sea. Mar. Pet. Geol. 75, 68-82. [143] Gieskes, J.M., Elderfield, H., Lawrence, J.R., Johnson, J., Meyers, B., Campbell, A., 1982. Geochemistry of Interstitial Waters and Sediments, Leg 64, Gulf of California. Initial Reports of the Deep Sea Drilling Project: A Project Planned by and Carried Out with the Advice of the Joint Oceanographic Institutions for Deep Earth Sampling, 64, pp. 675-694. [144] 牟传龙, 王秀平, 梁薇, 王远翀 , & 门欣. (2015). 上扬子区灯影组白云岩葡萄体特征及成因初探——以南江杨坝地区灯影组一段为例. 沉积学报, 33(6), 1097-1110. [145] 向芳, 陈洪德, 张锦泉. 资阳地区震旦系灯影组白云岩中葡萄花边的成因研究[J]. 矿物岩石, 1998, 18: 136-138. [146] Zhou, C., Bao, H., Peng, Y., Yuan, X. Timing the deposition of 17O-depleted barite at the aftermath of Nantuo glacial meltdown in South China. Geology, 2010, 38(10): 903-906. [147] Wood, R., Bowyer, F., Penny, A., & Poulton, S. W. (2018). Did anoxia terminate Ediacaran benthic communities? Evidence from early diagenesis. Precambrian Research, 313, 134-147. [148] Li, D., Ling, H. F., Shields-Zhou, G. A., Chen, X.,Cremonese, L., Och, L., Thirlwall, M., Manning, C. J.(2013). Carbon and strontium isotope evolution of seawater across the Ediacaran–Cambrian transition: Evidence from the Xiaotan section, NE Yunnan, South China. Precambrian Research, 225, 128-147. [149] Liu, Q., Zhu, D., Jin, Z., Liu, C., Zhang, D., & He, Z. (2016). Coupled alteration of hydrothermal fluids and thermal sulfate reduction (TSR) in ancient dolomite reservoirs–An example from Sinian Dengying Formation in Sichuan Basin, southern China. Precambrian Research, 285, 39-57. [150] Gao, P., Liu, G., Jia, C., Young, A., Wang, Z., Wang, T., Zhang, P., Wang, D. (2016). Redox variations and organic matter accumulation on the Yangtze carbonate platform during Late Ediacaran–Early Cambrian: constraints from petrology and geochemistry. Palaeogeography, Palaeoclimatology,Palaeoecology, 450, 91-110. [151] Della Porta, G., Webb, G.E., McDonald, I. REE patterns of microbial carbonate and cements from Sinemurian (Lower Jurassic) siliceous sponge mounds (Djebel Bou Dahar, High Atlas, Morocco)[J]. Chemical Geology, 2015, 400: 65-86. [152] Wu, H. P., Jiang, S. Y., Palmer, M. R., Wei, H. Z., & Yang, J. H. (2019). Positive cerium anomaly in the Doushantuo cap carbonates from the Yangtze platform, South China: Implications for intermediate water column manganous conditions in the aftermath of the Marinoan glaciation. Precambrian Research, 320, 93-110. [153] 梁锋, 谭兵, 王立恩, 熊益学, 刘倩虞, 张恒, . 娄焘, 陆明印,王猛. (2024). 川中古隆起蓬莱气区上震旦统灯影组二段白云岩储集层特征及优质储层形成主控因素. 天然气地球科学, 35(10), 1816-1832. [154] Hu, Y., Cai, C., Li, Y., Liu, D., Wei, T., Wang, D.,Jiang, L., Ma, R., Shi, S., Immenhauser, A. (2023). Sedimentary and diagenetic archive of a deeply buried, upper Ediacaran microbialite reservoir, southwestern China. AAPG bulletin, 107(3), 387-412. [155] Zhao, D., Ni, C., Li, S., Chen, Y., Qiao, Z., Luo, S., Wang, Q., Tan, X. (2024). Dolomitization history and fluid evolution of end-ediacaran multi-phase dolomites from the near-surface to deep burial depths in the tarim craton, northwestern China. Marine and Petroleum Geology, 168,106929. [156] Mazzullo, S. J. (1994). Dolomitization of periplatform carbonates (Lower Permian, Leonardian), Midland basin,Texas. Carbonates and Evaporites, 9(1), 95-112. [157] Saller, A. H., & Vijaya, S. (2002). Depositional and diagenetic history of the Kerendan carbonate platform, Oligocene, central Kalimantan, Indonesia. Journal of Petroleum Geology, 25(2), 123-149. [158] Wallace, M. W., Kerans, C., Playford, P. E., & McManus, A. (1991). Burial diagenesis in the Upper Devonian reef complexes of the Geikie Gorge region, Canning basin, Western Australia. AAPG bulletin, 75(6), 1018-1038. |
[1] | 魏巍, 朱筱敏, 朱世发, 何明薇, 吴健平, 王名巍, 吕思翰. 二连盆地额仁淖尔凹陷下白垩统云质岩致密油储层特征与成因[J]. 中国石油勘探, 2017, 22(3): 71-80. |
[2] | 陈康 张金川 唐玄 黄潇. 大民屯凹陷沙四段页岩含油率影响因素分析[J]. 中国石油勘探, 2015, 20(6): 22-28. |
[3] | 张 杰,Brian Jones,张建勇. 不同埋藏深度交代白云石晶体结构及其 对白云岩储层研究的意义[J]. , 2014, 19(3): 21-28. |
[4] | 黄正吉. 中国近海优质烃源岩的发育特征及古生态标志[J]. 中国石油勘探, 2012, 17(5): 10-16,26,81. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||