中国石油勘探 ›› 2025, Vol. 30 ›› Issue (5): 126-142.DOI: 10.3969/j.issn.1672-7703.2025.05.010

• 工程技术 • 上一篇    

油气产量预测方法与技术研究进展

刘保磊1,2,3,4,张心怡2,4   

  1. 1 低碳催化与二氧化碳利用全国重点实验室( 长江大学);2 油气资源与勘探技术教育部重点实验室(长江大学);3 油气钻采工程湖北省重点实验室(长江大学);4 长江大学石油工程学院
  • 发布日期:2025-09-14
  • 作者简介:刘保磊(1982-),男,江苏徐州人,博士,2014年毕业于中国石油勘探开发研究院,副教授,现主要从事油气田开发理论与技术方面的工作。地址:湖北省武汉市长江大学武汉校区,邮政编码:430100。
  • 基金资助:
    国家自然科学基金面上项目(52174019)。

Advances in Oil and Gas Production Forecasting Methods and Applications

Liu Baolei1,2,3,4,Zhang Xinyi2,4   

  1. 1 State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization(Yangtze University), 2 Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), 3 Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering( Yangtze University), 4 School of Petroleum Engineering, Yangtze University
  • Published:2025-09-14

摘要: 油气产量预测是优化油气田开发策略、提升采收率的关键技术手段。本文系统梳理了油气产量递减规律的理论体系,对比分析了传统经验模型与解析方法的理论框架、适用条件及局限性,并重点探讨了机器学习在复杂储层产量预测中的创新应用。分析认为:(1)传统方法在常规储层中仍具稳健性,但其在非常规油气田中受限于强非均质性和多相渗流非线性等复杂条件;(2)数据驱动模型通过自动特征提取与时空关联建模,在非常规储层预测中展现出显著优势;(3)物理约束混合模型有效融合数据驱动能力与物理机理,在复杂条件及长期预测中表现出更可靠的预测性能。研究结果表明,人工智能技术显著提升了油气产量预测的精度与可靠性,其中机器学习和深度学习方法为复杂储层开发提供了创新技术支撑。然而,该技术在实时计算和模型可解释性等工程应用层面仍存在挑战,需进一步深化人工智能与油气领域的交叉融合研究,以促进油气行业向智能化、高质量方向发展。

关键词: 产量预测;递减模型;机器学习;深度学习;应用分析

Abstract: Oil and gas production forecasting is a critical technical approach for optimizing field development strategies and enhancing recovery efficiency. This study systematically reviews the theoretical framework of production decline analysis, conducts a comparative evaluation of conventional empirical models and analytical methods in terms of their theoretical foundations, applicability, and limitations, and highlights innovative applications of machine learning in production prediction for complex reservoirs. The analysis suggests that: ① Traditional methods maintain robustness in conventional reservoirs but exhibit constrained performance in unconventional plays due to strong heterogeneity and multiphase flow nonlinearity; ② Data-driven models demonstrate superior predictive capabilities in unconventional reservoirs through automated feature extraction and spatiotemporal correlation modeling; ③ Physics-informed hybrid models effectively integrate data-driven advantages with physical mechanisms, delivering enhanced reliability under complex conditions and long-term forecasting. The study concludes that artificial intelligence significantly improves prediction accuracy and reliability, with machine learning and deep learning offering novel technical support for complex reservoir development. However, challenges persist in engineering applications, particularly in real-time computation and model interpretability, necessitating further interdisciplinary research to advance intelligent and sustainable development in the oil and gas industry.

Key words: Production forecasting; Decline model; Machine learning; Deep learning; Application analysis

中图分类号: