Please wait a minute...
 首页  杂志简介 编委会 投稿须知 下载中心 期刊订阅 广告合作 留言板 联系我们 English
  中文核心期刊要目总览
中国期刊全文数据库(CJFD)收录
中文科技期刊数据库原文收录
中国石油文献数据库收录
美国化学文摘(CA,Chemical Abstracts)收录
美国石油文摘(PA,Petroleum Abstracts)收录
最新录用  |  当期目录  |  热点文章  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行
中国石油勘探  2018, Vol. 23 Issue (5): 100-110    DOI: 10.3969/j.issn.1672-7703.2018.05.013
  工程技术 本期目录 | 过刊浏览 | 高级检索 |
基于经验小波变换的地震资料噪声压制方法
覃发兵1, 徐振旺2, 啜晓宇3, 张小明4, 郭乃川5, 董玉文6, 陈伟7
1 长江大学管理学院;
2 中国石油辽河油田公司勘探开发研究院;
3 河北煤炭科学研究院;
4 中国石油集团东方地球物理公司大港物探处;
5 中海石油(中国)有限公司天津分公司渤海石油研究院;
6 中国石油集团东方地球物理公司研究院资料处理中心;
7 非常规油气湖北省协同创新中心
Seismic noise suppression based on empirical wavelet transformation
Qin Fabin1, Xu Zhenwang2, Chuan Xiaoyu3, Zhang Xiaoming4, Guo Naichuan5, Dong Yuwen6, Chen Wei7
1 School of Management, Yangtze University;
2 Research Institute of Exploration and Development, PetroChina Liaohe Oilfield Company;
3 Hebei Coal Science Research Institute;
4 BGP Dagang Division, CNPC;
5 Bohai Petroleum Research Institute, Tianjin Branch of CNOOC Ltd.;
6 Seismic Data Processing Center of GRI, BGP, CNPC;
7 Hubei Cooperative Innovation Center of Unconventional Oil and Gas
全文: PDF(5799 KB)   HTML  () 评审附件 (1 KB) 
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 噪声压制是地震资料处理中重要的环节,目前已有的去噪技术存在着噪声去除不干净、有效信号丢失、不能处理非线性非平稳信号等问题。经验小波变换(Empirical Wavelet Transform,简写为EWT)是一种能自适应分解原始信号的算法,其相较于经典的经验模态分解(Empirical Mode Decomposition,简写为EMD)具有更好的自适应性和完善的数学理论基础。将EWT算法引入到地震资料噪声压制中,选取合适的小波函数并利用EWT算法对目标地震信号进行自适应分解,得到其各个频率尺度的固有模态分量;然后根据原始地震信号的主频设定阈值范围,选取主频值在阈值范围内的固有模态分量进行重构,最终获取去噪后的地震信号。结果表明将EWT噪声压制算法应用于数值模型和实际地震资料中,可以很好地实现有效信号和噪声的分离,结果均比常规算法的去噪效果要好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
覃发兵
徐振旺
啜晓宇
张小明
郭乃川
董玉文
陈伟
关键词 经验模态分解(EMD)总体经验模态分解(EEMD)经验小波变换(EWT)固有模态分量(IMF)去噪    
Abstract:Noise suppression is an important step in seismic data processing. However, the applicable denoising methods cannot remove noise effectively, or process nonlinear or unstable signals. The Empirical Wavelet Transform (EWT) developed recently is an adaptive decomposition algorithm which has better adaptability and more complete mathematical theory than the Empirical Mode Decomposition (EMD). The EWT algorithm is introduced into seismic data for noise suppression. Firstly, a suitable wavelet function is selected which adaptively decomposes target seismic signals to get intrinsic mode functions at different frequency scales. Secondly, a threshold range is set based on the dominant frequency and the intrinsic mode functions whose dominant frequencies are within the threshold range are selected to reconstruct signals and finally get denoised signals. Application of the EWT algorithm to numerically simulated data and real seismic data has proved effective separation of signals from noises, and the result is better than those from conventional denoising algorithms.
Key wordsempirical mode decomposition (EMD)    ensemble empirical mode decomposition (EEMD)    empirical wavelet transformation (EWT)    intrinsic mode function (IMF)    denoising
收稿日期: 2017-11-22      出版日期: 2018-09-15
ZTFLH:     
基金资助:国家自然科学基金项目“基于经验模态分解的自由表面多次波衰减方法研究”(41804140)。
通讯作者: 陈伟(1985-),男,湖北监利人,博士,2014年毕业于中国石油大学(北京),副教授,现主要从事地震信号处理与解释方面的教学和科研工作。地址:湖北省武汉市蔡甸区大学路111号,邮政编码430100。E-mail:chenwei2014@yangtzeu.edu.cn     E-mail: chenwei2014@yangtzeu.edu.cn
引用本文:   
覃发兵, 徐振旺, 啜晓宇, 张小明, 郭乃川, 董玉文, 陈伟. 基于经验小波变换的地震资料噪声压制方法[J]. 中国石油勘探, 2018, 23(5): 100-110.
Qin Fabin, Xu Zhenwang, Chuan Xiaoyu, Zhang Xiaoming, Guo Naichuan, Dong Yuwen, Chen Wei. Seismic noise suppression based on empirical wavelet transformation. China Petroleum Exploration, 2018, 23(5): 100-110.
链接本文:  
http://www.cped.cn/CN/10.3969/j.issn.1672-7703.2018.05.013      或      http://www.cped.cn/CN/Y2018/V23/I5/100
[1] Chen Yangkang, Li Xia, Zhang Guoyin, Gan Shuwei. Delineating karstification using synchrosqueezeing wavelet transform[C]. SEG Annual Meeting, New Orleans, 2015:1835-1840.
[2] Chen Yangkang, Liu Tingting, Chen Xiaohong, Li Jingye, Wang Erying. Time-frequency analysis of seismic data using synchrosqueezing wavelet transform[J]. Journal of Seismic Exploration, 2014,23(5):303-312.
[3] Daubechies I, Lu J, Wu H T. Synchrosqueezed wavelet transforms:an empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011,30(2):243-261.
[4] Gilles J. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013,61(16):3999-4010.
[5] Han J, van der B M. Empirical mode decomposition for seismic time-frequency analysis[J]. Geophysics, 2013,78(2):O9-O19.
[6] Herrera R H, Han J, van der B M. Applications of the synchrosqueezing transform in seismic time-frequency analysis[J]. Geophysics, 2014,79(3):V55-V64.
[7] Wang P, Gao J, Wang Z. Time-frequency analysis of seismic data using synchrosqueezing transform[J]. IEEE Geoscience and Remote Sensing Letters, 2014,11(12):2042-2044.
[8] 国九英. 叠前ω-x域算子外推法去噪[J]. 石油地球物理勘探, 1995,30(4):487-494. Guo Jiuying. Prestack noise reduction using ω-x-domain operator extrapolation[J]. Oil Geophysical Prospecting,1995, 30(4):487-494.
[9] 蔡加铭,周兴元,吴律.f-x域算子外推去噪技术研究[J]. 石油地球物理勘探,1995,1999,34(3):325-331. Cai Jiaming, Zhou Xingyuan, Wu Lv. A technique for noise elimination using operator extrapolation in f-x domain[J]. Oil Geophysical Prospecting, 1999,34(3):325-331.
[10] Pangs G, 陈云峰,杨淑卿. 用局部径向记录道中值滤波进行线性噪声衰减[J]. 油气地球物理,2005,3(3):49-51. Pangs G, Chen Yunfeng, Yang Shuqing. Linear noise attenuation using local median trace median filtering[J]. Petroleum Geophysics, 2005,3(3):49-51.
[11] Douglas A. Noise reduction in seismic data using Fourier correction coefficient filtering[J]. Geophysics, 1997,62(5):1617-1627.
[12] Jaffard S, Meyer Y, Ryan R D. Wavelets:Tools for science and technology[M]. USA:Society for Industrial and Applied Mathematics, 1987.
[13] Malvar H S. Lapped transforms for efficient transform/subband coding[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990,38(6):969-978.
[14] Meyer F G, Coifman R R. Brushlets:A tool for directional image analysis and image compression[J]. Applied and Computational Harmonic Analysis, 1997,4(2):147-187.
[15] Wu X, Liu T. Seismic spectral decomposition and analysis based on Wigner-Ville distribution for sandstone reservoir characterization in West Sichuan depression[J]. Journal of Geophysics and Engineering, 2010,7(2):126-134.
[16] Norden E Huang, Zheng Shen, Steven R Long, Manli C Wu, Hsing H Shih, Quanan Zheng, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of the Royal Society of London A, 1998,454:903-995.
[17] Wu Z H, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proceedings of the Royal Society of London A, 2004,460A:1597-1611.
[18] Wu Z H, Huang N E. Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009,1(1):1-41.
[19] Parkan M S, Siahkoohi H R, Gholami A. Application of empirical mode decomposition and Hilbert spectrum in seismic data denoising and low frequency shadow identification[J]. Journal of the Earth & Space Physics, 2015,41(2):45-59.
[20] Gilles J. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013,61(16):3999-4010.
[21] Thirumala K, Umarikar A C, Jain T. Estimation of singlephase and three-phase power-quality indices using empirical wavelet transform[J]. IEEE Transactions on Power Delivery, 2015,30(1):445-454.
[1] 董兵波,宁日亮,张淑梅,柳世光. 面向储层的地震资料处理技术在辽河油田马19井区的研究与应用[J]. , 2013, 18(1): 49-53.
[2] 侯安宁,张海云,傅旦丹,杨晓,郭礼平. 吐哈盆地北部山前带红旗坎三维叠前深度偏移处理解释[J]. , 2011, 16(Z1): 41-48,172.
[3] 赵贤正,张以明,唐传章,邱毅,刘章造. 高精度三维地震采集处理解释一体化勘探技术与管理[J]. , 2008, 13(2): 74-82,10.
[4] 高现俊,史英龙,张志国,贾福宗,杨军. 叠前时间偏移特色配套处理技术研究及其在华北探区的应用[J]. , 2008, 13(2): 45-52,9.
[5] 谷跃民,赵建章,张进铎,赖江德,张素红,刘翠风. 塔中奥陶系碳酸盐岩内幕成像处理技术探讨与地质认识[J]. , 2008, 13(1): 34-39,9.
[6] 张玮,蔡加铭. 塔里木盆地塔中沙漠区高分辨率地震勘探效果[J]. , 2007, 12(3): 43-47,2.
[7] 冯云发,王海. 柴达木盆地复杂构造地区地震资料处理技术进展[J]. , 2006, 11(6): 59-63,130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《中国石油勘探》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: