中国石油勘探 ›› 2025, Vol. 30 ›› Issue (2): 130-147.DOI: 10.3969/j.issn.1672-7703.2025.02.010

• 工程技术 • 上一篇    下一篇

基于树结构Parzen估计器优化后两层Stacking模型的岩石脆性指数预测

王芷含1,温韬2   

  1. 1 长江大学地球科学学院;2 湖北长大科技开发有限公司加查县分公司
  • 出版日期:2025-03-14 发布日期:2025-03-14
  • 作者简介:王芷含(2004-),男,湖北荆州人,在读学士,主要从事机器学习算法预测与滑坡地质灾害研究工作。地址:湖北省武汉市蔡甸区蔡甸街道大学路111号长江大学(武汉校区), 邮政编码:430100。
  • 基金资助:
    国家自然科学基金(No.42477174);西藏自治区科技项目(XZ202301YD0034C,XZ202202YD0007C, ZDZX2024000002);青海省基础研究计划项目(2024-ZJ-904)。

Prediction of Brittleness Index using Two-layer Stacking Model Optimized by Tree-structured Parzen Estimator

Wang Zhihan1, Wen Tao2   

  1. 1.School of Geosciences, Yangtze University;2 Jiacha County branch of Hubei Yangtze University Technology Development Co. Ltd
  • Online:2025-03-14 Published:2025-03-14

摘要: 目前岩石脆性指数的评价方法众多,主要基于矿物组分或岩石力学性质开展评价,但多数评价指标获取费用高昂、耗时长。采用机器学习的手段,提出一种基于Stacking集成学习思想的岩石脆性指数预测方法,并行训练梯度提升决策树模型(GBDT)、随机森林模型(RF)、朴素决策树模型(DT)、支持向量回归模型(SVR)以及LightGBM模型等,并加以树结构Parzen估计器对各模型进行超参数调优后,串行使用XGBoost模型对基模型训练结果进行融合,从而实现各参数的快速寻优和岩石脆性指数的预测。结果表明,基于树结构Parzen估计器优化后的两层Stacking模型预测结果与使用的基模型预测结果相比具有明显优势,其可释方差得分(EVS)最高达到0.97,决定系数(R2)最高达到0.967,在同样的数据集表现中,该模型平均绝对误差(MAE)和均方根误差(RMSE)均最小,表明该模型能够在有监督学习的技术背景下较好地拟合岩石脆性指数的变化规律,验证了其在预测岩石脆性指数方面具有一定的实用价值。

关键词: 岩石脆性指数, Stacking模型, 集成学习, 树结构Parzen估计器

Abstract: Currently, there are numerous methods for evaluating rock brittleness index, mainly based on mineral composition or rock mechanical properties evaluation, but most of these evaluation indicators are costly to obtain and time-consuming. By utilizing machine learning techniques, a rock brittleness index prediction method based on the Stacking ensemble learning concept is proposed. This method involves parallel training of Gradient Boosting Decision Tree model (GBDT), Random Forest model (RF), Naive Decision Tree model (DT),Support Vector Regression model (SVR), and LightGBM model. After hyperparameter tuning using a tree-structured Parzen estimator for each model, the XGBoost model is sequentially used to merge the training results of the base models to achieve rapid parameter optimization and prediction of rock brittleness index. The results indicate that the two-layer Stacking model optimized with the tree-structured Parzen estimator shows significant advantages compared to the predictions of the base models. The explained variance score (EVS) reaches up to 0.97, and the coefficient of determination (R2) reaches a maximum of 0.967. In the same dataset performance comparison, this model exhibits the lowest Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), implying that this model can effectively capture the variation patterns of rock brittleness index under the supervised learning framework. This verifies its practical value in predicting rock brittleness index.

Key words: Rock brittleness index, Stacking model, Ensemble learning, Tree-structured Parzen Estimator

中图分类号: