[1] Meng F, Wong L N Y, Zhou H. Rock brittleness indices and their applications to different fields of rock engineering: a review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021,13(1):221-247.
[2] 江锚,张丽平,周俊,等. 海上低渗油藏体积压裂可行性研究[J]. 非常规油气,2024,11(3):130-138.
Jiang Mao, Zhang Liping, Zhou Jun, et al . Feasibility study of volume fracturing in offshore low-permeability reservoir[J].Unconventional Oil & Gas, 2024,11(3):130-138.
[3] 刘震,张军华,于正军,等. 非常规储层脆性研究进展及展望[J]. 石油地球物理勘探,2023,58(6):1499-1507.
Liu Zhen, Zhang Junhua, Yu Zhengjun, et al . Progress and prospects of brittleness research in unconventional reservoirs[J].Oil Geophysical Prospecting, 2023,58(6):1499-1507.
[4] 李钜源. 东营凹陷泥页岩矿物组成及脆度分析[J]. 沉积学报,2013,31(4):616-620.
Li Juyan. Analysis on mineral components and frangibility of shales in Dongying Depression[J]. Acta Sedimentologiga Sinica,2013,31(4):616-620.
[5] 曹丹平,韩金鑫,肖竣夫,等. 弹性特征约束下的矿物成分页岩脆性评价方法研究[J]. 地球物理学报,2023,66(11):4781-4791.
Cao Danping, Han Jinxin, Xiao Junfu, et al . Method for evaluating the brittleness of shale minerals under the constraints of elastic characteristics[J]. Chinese Journal of Geophysics,2023,66(11):4781-4791.
[6] Rickman R, Mullen M, Petre E, et al . A practical use of shale petrophysics for stimulation design optimization: all shale plays sre not clones of the barnett shale[J]. Society of Petroleum Engineers, 2008:47-50.
[7] 李坪东,苏幽雅,邵晓岩,等. 盐池地区延长组长8 段致密油储层脆性指数测井评价[J]. 石油地质与工程,2024,38(1):6-12.
Li Pingdong, Su Youya, Shao Xiaoyan, et al . Logging evaluation of brittleness index of tight oil sandstone in Chang 8 member of Yanchang Formation in Yanchi area[J]. Petroleum Geology and Engineering, 2024,38(1):6-12.
[8] Andreev G E. Brittle failure of rock materials[M]. Boca Raton:CRC Press, 1995.
[9] Hucka V, Das B. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1974,11(10):389-392.
[10] Khandelwal M, Armaghani D J. Prediction of drillability of rocks with strength properties using a hybrid GA-ANN technique [J]. Geotechnical and Geological Engineering, 2015, 34(2):605-620.
[11] Momeni E, Jahed Armaghani D, Hajihassani M, et al . Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks[J]. Measurement, 2015,60:50-63.
[12] 杜睿山,李宏杰,孟令东,等. 基于PSO-BiLSTM 的储层岩石脆性指数预测[J]. 海南大学学报( 自然科学版),2023,41(3):260-267.
Du Ruishan, Li Hongjie, Meng Lingdong, et al . Prediction of reservoir rock brittleness index based on PSO-BiLSTM[J].Natural Science Journal of Hainan University, 2023,41(3):260-267.
[13] 张磊,陶千惠,叶婧,等. 考虑分位数回归XGBoost-Stacking 模型的短期惯量区间预测 [J/OL]. 电力系统自动化:1-11.
Zhang Lei, Tao Qianhui, Ye Jing, et al . Short-term Inertia Interval Prediction of Power System Based on XGBoost-Stacking Fusion Model Considering Quantile Regression [J/OL].Automation of Electric Power Systems, 2024,1-11.
[14] 郑颖颖,李鑫,陈延旭,等. 基于Stacking 多模型融合的极端天气短期风电功率预测方法[J]. 高电压技术,2024,50(9):1-12.
Zheng Yingying, Li Xin, Chen Yanxu, et al . Short-term wind power forecasting method in extreme weather based on stacking Multi-model Fusion[J]. High Voltage Engineering,2024,50(9):1-12.
[15] Liu Z, Li D, Liu Y, et al . Prediction of uniaxial compressive strength of rock based on lithology using stacking models[J].Rock Mechanics Bulletin, 2023,2(4):1-5.
[16] 黄遂,孙润,徐琪超,等. 不同温度条件下花岗岩的点荷载强度特征试验研究[J]. 工程与试验,2023,63(2):10-14.
Huang Sui, Sun Run, Xu Qichao, et al . Experimental Study on Point Load Strength Characteristics of Granite under Different Temperature Conditions[J]. Engineering & Test,2023,63(2):10-14
[17] 李家棒,王军成,王斌,等. 纵横波联合勘探在ZY 核电厂选址中的应用[J]. 地质学刊,2024,48(4):1-9.
Li Jiabang, Wang Juncheng, Wang Bin, et al . Application of joint compressional and shear wave exploration in ZY nuclear power plant site selection[J]. Journal of Geology, 2024,48(4):1-9.
[18] 范祥,林杭,熊威,等. 吸水率和吸水时间对红砂岩施密特硬度的影响[J]. 中国矿业大学学报,2015,44(2):233-240.
Fan Xiang, Lin Hang, Xiong Wei, et al . Influence of water absorption rate and time on the Schmidt hardness of red sandstone[J]. Journal of China University of Mining & Technology, 2015,44(2):233-240.
[19] 周洁. 一种深孔内壁邵氏硬度测量装置[J]. 上海电气技术,2022,15(4):52-55,65.
Zhou Jie. A deep-home inner wall shore hardness measuring device[J]. Journal of Shanghai Electric Technology, 2022,15(4):52-55,65.
[20] 郭亮,郭子雪,贾洪涛,等. 基于皮尔逊相关系数与SVM 的居民窃电识别[J]. 河北大学学报( 自然科学版),2023,43(4):357-363.
Guo Liang, Guo Zixue, Jia Hongtao, et al . Residents electric larceny detection based on Pearson correlation coefficient and SVM[J]. Journal of Hebei University(Natural Science Edition),2023,43(4):357-363.
[21] 罗敏,杨劲锋,俞蕙,等. 基于树结构Parzen 估计器优化集成学习的短期负荷预测方法[J]. 上海交通大学学报,2024,58(6):819-825.
Luo Min, Yang Jinfeng, Yu Hui, et al . TPE-Based Boosting Short-Trem Load Forecasting Method [J]. Journal of Shanghai Jiao Tong University, 2024,58(6):819-825.
[22] 高嘉鑫,张伟,高铭. 基于梯度提升决策树的材料计算时间预测模型[J]. 软件导刊,2024,23(3):15-20.
Gai Jiaxin, Zhang Wei, Gao Ming. Material calculation time prediction model based on gradient boosting decision trees[J].Software Guide, 2024,23(3):15-20.
[23] 车志宏,吕峰. 基于随机森林的集成算法研究[J]. 电脑编程技巧与维护,2024,(5):48-50,80.
Che Zhihong, Lv Feng. Research on ensemble algorithm based on Random Forest[J]. Programming Skills & Maintenance,2024,(5):48-50,80.
[24] 李强,杨林,李超凡,等. 基于SVR 和电化学阻抗谱的锂电池内部温度在线估计[J]. 电源技术,2024,48(9):1738-1746.
Li Qiang, Yang Lin, Li Chaofan, et al . Online estimation of internal temperature of lithium battery based on SVR and electrochemical impedance spectroscopy[J]. Chinese Journal of Power Sources, 2024,48(9):1738-1746.
[25] 田仁飞,李山,刘涛,等. 基于XGBoost 算法的VP/VS 预测及其在储层检测中的应用[J]. 石油地球物理勘探,2024,59(4):653-663.
Tian Renfei, Li Shan, Liu Tao, et al . vP/vS prediction based on XGBoost algorithm and its application in reservoir detection[J]. Oil Geophysical Prospecting, 2024,59(4):653-663. |