中国石油勘探 ›› 2022, Vol. 27 ›› Issue (5): 106-115.DOI: 10.3969/j.issn.1672-7703.2022.05.010

• 工程技术 • 上一篇    下一篇

塔里木盆地克拉苏构造带超深层致密砂岩气藏一体化增产关键技术与实践

徐珂1,2,杨海军2,张辉1,王志民1,王海应1,尹国庆1,刘新宇1,袁芳1,李超1,赵崴1   

  1. 1 中国石油塔里木油田公司勘探开发研究院;2 中国石油塔里木油田公司
  • 出版日期:2022-09-15 发布日期:2022-09-15
  • 作者简介:徐珂(1991-),男,四川遂宁人,博士,2018年毕业于中国石油大学(华东),高级工程师,现主要从事油气田地质力学研究和应用方面的工作。地址:新疆库尔勒市塔里木油田勘探开发研究院,邮政编码:841000。
  • 基金资助:
    国家科技重大专项“库车坳陷深层—超深层天然气田开发示范工程”(2016ZX05051);中国石油天然气股份有限公司重大科技专项“库车坳陷深层—超深层天然气田开发关键技术研究与应用”(2018E-1803);中国博士后科学基金“博孜—大北区带地质力学对构造和储层影响机理研究”(2019M660269)。

Key technology and practice of the integrated well stimulation of ultra-deep tight sandstone gas reservoir in Kelasu structural belt, Tarim Basin

Xu Ke1,Yang Haijun2,Zhang Hui1,Wang Zhimin1,Wang Haiying1,Yin Guoqing1,Liu Xinyu1,Yuan Fang1,Li Chao1,Zhao Wei1   

  1. 1 Research Institute of Exploration & Development,PetroChina Tarim Oilfield Company; 2 PetroChina Tarim Oilfield Company
  • Online:2022-09-15 Published:2022-09-15

摘要: 塔里木盆地克拉苏构造带克深10气藏是超深层致密砂岩气藏,钻井情况复杂,自然产能低,增产难度大。为了提高天然气勘探开发效益,在克深10 气藏地质研究的基础上,开展了现今地应力场、裂缝活动性等地质力学分析,明确了克深10气藏现今地应力场和裂缝活动性分布规律,发现不同方位的裂缝渗透性有明显差异,进而分析了不同井型、不同方向的井眼轨迹压裂改造效果,提出了地质工程一体化工作方法,指导优化井眼轨迹设计。结果表明:(1)超深层气藏不同于中—浅层气藏,现今地应力及其影响下的裂缝活动性与超深层气井产能有明显关联,现今地应力低且裂缝活动性好有利于气井高产;(2)超深储层不同部位的现今地应力及裂缝特征、井壁稳定性、压裂缝网延伸情况差异大,大斜度井相比直井在钻井安全、低应力区和高角度裂缝钻遇率、压裂改造效果方面更具优势,有利 的井眼轨迹能有效克服超深层致密砂岩气藏强非均质性以获得高产;(3)基于现今地应力场建模的裂缝活动性分析、井壁稳定性预测和压裂缝网模拟是地质工程一体化工作中的关键技术,有利于最佳井眼轨迹优选及改造方式和改造层段的优选;(4)地质工程一体化搭建了地质研究和工程施工的桥梁,对超深层气井增产、提高超深层油气勘探开发效益有积极作用。

关键词: 超深层, 地质力学, 地应力, 裂缝活动性, 井眼轨迹, 增产, 地质工程一体化, 克深10气藏

Abstract: Keshen 10 gas reservoir, developed in Kelasu structural belt in Tarim Basin, is an ultra-deep tight sandstone gas reservoir, which shows complex drilling conditions, low natural production capacity and great challenge in increasing well production. In order to improve the benefits of gas exploration and development, geomechanic analysis such as the current in-situ stress field and fracture activity is conducted on the basis of geological study, which enables to determine the distribution law of the current in-situ stress field and fracture activity of Keshen 10 gas reservoir, and identify great variation in permeability of fractures with different directions. Then the fracturing results are analyzed of various well trajectories with different well types and deviations, and the geology and engineering integrated working method is proposed to guide the optimization of well trajectory design. The results show that: (1) Different from the medium-shallow gas reservoirs, well production capacity is distinctly affected by the current in-situ stress and its induced fracture activity of the ultra-deep gas reservoir, and it is indicated that low current in-situ stress and active fractures are conducive to the high production of gas wells; (2) The current in-situ stress, fracture characteristics, wellbore stability and the propagation of fracture network vary greatly in various parts of the ultra-deep reservoir, therefore,the highly deviated wells have more advantages in drilling safety, drilling rate of the low in-situ stress areas and high angle fractures, as well as better fracturing results than wertical wells, and the practice shows that the high-yield production can be obtained by a favorable wellbore trajectory when effectively dealing with the strong heterogeneity of the ultra-deep tight sandstone gas reservoir; (3) The current in-situ stress field modeling based fracture activity analysis, wellbore stability prediction and fracture network simulation are the key technologies in geology and engineering integrated fracturing engineering, which are conducive to the optimization of wellbore trajectory and optimal selection of fracturing method and intervals; (4) The geology and engineering integrated working method supports to build a bridge between geological study and engineering construction, which plays a positive role in well stimulation of ultra-deep gas reservoir and improving the benefits of ultra-deep oil and gas exploration and development.

中图分类号: