• • 上一篇    下一篇

数字岩心电性数值模拟方法及其发展方向

孔强夫 周灿灿 李潮流 胡法龙   

  1. 中国石油勘探开发研究院
  • 发布日期:2015-05-20
  • 作者简介:孔强夫(1989-),男,湖北咸宁人,中国石油勘探开发研究院在读硕士,现主要从事测井岩石物理数值模拟研究工作。地址: 北京市海淀区学院路20 号中国石油勘探开发研究院测井与遥感技术研究所,邮政编码:100083。E-mail:kqf080519@163.com
  • 基金资助:
    国家科技重大专项复杂储层油气测井解释理论方法与处理技术(2011ZX05020-008)

Numerical Simulation Method of Digital Core Electrical Property and Its Development Orientations

Kong Qiangfu, Zhou Cancan, Li Chaoliu, Hu Falong   

  1. PetroChina Research Institute of Petroleum Exploration & Development
  • Published:2015-05-20

摘要: 以致密砂岩为代表的非常规油气储层孔隙空间复杂导致岩石物理实验测量周期长,成本高,难以定量研 究微观参数对电阻率的影响,而以X 射线CT 扫描为基础发展起来的数字岩心岩石物理属性模拟技术则弥补了这种 不足。系统总结了基于数字岩心电性数值模拟格子波尔兹曼方法、基尔霍夫电路节点法、随机游走法以及有限元法的 优缺点,探讨了目前电性数值模拟研究存在的4 个主要问题:①缺乏模拟更多微观因素的方法模型;②分辨率与储层 非均质性之间的矛盾;③图像分割方法的局限性;④数字孔隙格架的多解性。指出了基于数字岩心电性模拟的4 个发 展方向:①精细三维孔隙网络模型的构建;②基于多阈值分割方法的图像处理;③电性模拟方法模型的优化;④基于 数字岩心高性能并行计算技术。该研究有助于提高致密砂岩岩石电性数值模拟研究水平,为非常规储层勘探开发奠定 坚实的基础。

Abstract: Unconventional oil and gas reservoirs represented by tight sandstone are complicated in porous space, leading to a long period of rock physical measurement at a high cost and making it difficult to quantitatively study the influence of micro parameters on resistivity. Simulation technology for digital core physical properties developed on the basis of the X-ray CT scanning makes up for this deficiency. This paper systematically summarizes the advantages and disadvantages of various kinds of numerical simulation methods for digital core electrical properties, such as Lattice Boltzmann method, Kirchhoff circuit node method, the random walk method and the finite element method. It also discusses four main problems currently existing in numerical simulation study of electrical properties – (1) lack of models for simulation of more micro factors; (2) contradiction between resolution and heterogeneity of reservoir; (3) limitation of image segmentation method; (4) multiple solutions of digital pore network. It also points out four development orientations for digital-based core property simulation – (1) construction of fine 3-D pore network model; (2) image processing based on multiple threshold segmentation method; (3) optimization of electric simulation model; (4) high-performance parallel computing technology based on digital core. This study will help improve numerical simulation of tight sandstone electrical property and lay a solid foundation for exploration and development of unconventional reservoirs.