[1] 李斌, 朱筱敏. 伏尔加—乌拉尔典型前陆盆地石油地质特征及勘探前景分析[J]. 石油实验地质, 2012,34(1):47-52.
Li Bin, Zhu Xiaomin. Petroleum geology and exploration potential of Volga-Ural Basin: one typical foreland basin[J].Petroleum Geology & Experiment, 2012,34(1):47-52.
[2] IHS. Volga-Urals Basin[R].IHS Market, 2024.
[3] Sobornov K O. New Oil and Gas Plays in the Cis-Urals[J]. Russian Geology and Geophysics, 2024,65(8):936-955.
[4] 窦立荣, 温志新, 王兆明, 等. 全球古老油气成藏组合资源潜力、重大发现及启示[J]. 石油学报, 2024,45(08):1163-1173.
Dou Lirong, Wen Zhixin, Wang Zhaoming, et al. Resource potential, giant discoveries, and implications of ancient hydrocarbon plays worldwide [J].Acta Petrolei Sinica, 2024,45(08):1163-1173.
[5] Caplan M L, Bustin R M. Devonian-Carboniferous Hangenberg mass extinction event, widespread organic-rich mudrock and anoxia: causes and consequences[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999(148):187-207.
[6] Pisarzowska A, Racki G. Isotopic chemostratigraphy across the Early–Middle Frasnian transition (Late Devonian) on the South Polish carbonate shelf: A reference for the global punctata Event[J]. Chemical Geology, 2012(334):199-220.
[7] Konyukhov A I. Hydrocarbon Source Rocks in Sedimentary Basins of Continental Margins in the Middle–Late Paleozoic[J]. Lithology and Mineral Resources, 2014,49(4):336-358.
[8] Brito A D S, Soares J L, Lima S G D, et al. Postglacial transgressive shales of Upper Devonian–Lower Carboniferous boundary of the Parnaíba Basin[J]. Journal of South American Earth Sciences, 2020,101:102621.
[9] Mansour A, Adeyilola A, Gentzis T, et al. Depositional setting and organic matter characterization of the Upper Devonian Antrim Shale, Michigan Basin: Implications for hydrocarbon potential[J]. Marine and Petroleum Geology, 2022(140):105683.
[10] Ardakani O H, Gadd M G, Hedhli M, et al. Organic matter the major sink of redox-sensitive trace elements in Upper Devonian black shale[J]. Chemical Geology, 2024,670:122385.
[11] Dunkel C A, Vázquez-Ortega A, Evans J E. Black shale–gray shale transitions in a Late Devonian shale succession, Central Appalachian Basin (Northern Ohio): Sedimentary and geochemical evidence for terrestrial organic matter input driving anoxia events[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022,608:111271.
[12] EIA. Technically recoverable shale oil and shale gas resources:Russia[R]. Washington, DC: U.S. Department of Energy,2015.
[13] Mel’Nikov P N, Varlamov A I, Fortunatova N K, et al. Results of quantitative estimation of unconventional oil resources of the Russian Federation[J]. Russian geology and geophysics, 2024,65(1):5-19.
[14] 梁新平, 金之钧, Shpilman Alexander, 等. 俄罗斯页岩油地质特征及勘探开发进展[J]. 石油与天然气地质, 2019,40(3):478-490,503.
Liang Xinping, Jin Zhijun, Shpilman Alexander, et al. Geological characteristic sandlatest progress in exploration and development of Russian shale oil [J]. Oil & Gas Geology, 2019,40(3):478-490, 503.
[15] Fortunatova N K, Varlamov A I, Kanev A S, et al. Structure and assessment of the oil potential of carbonaceous carbonatesiliceous Domanik deposits in the Volga-Ural oil and gas province[J]. Russian geology and geophysics, 2021,62(8):929-946.
[16] Liang X, Jin Z, Philippov V, et al. Sedimentary characteristics and evolution of Domanik facies from the Devonian–Carboniferous regression in the southern Volga-Ural Basin[J]. Marine and Petroleum Geology, 2020,119:104438.
[17] Yousef I, Morozov V P. Exploring the potential of drill cuttings for reservoir characterization: A case study from the Volga-Ural basin, Russia[J]. Petroleum Research, 2024,9(2):193-205.
[18] Saeed S A, Hakimi M H, Al-Muntaser A A, et al. Geochemical, mineralogical and petrographical characteristics of the domanik formation from north samara region in the volga-ural basin, Russia: Implication for unconventional tight oil reservoir potential[J]. Journal of petroleum science & engineering, 2023,220:111240.
[19] Nasyrova Z R, Kayukova G P, Mukhamadyarova A N, et al. Hydrocarbon Composition of Products Formed by Transformation of the Organic Matter of Rocks from Tatarstan Domanik Deposits in Supercritical Water[J]. Petroleum Chemistry, 2022,62(2):199-213.
[20] Morozov V P, Jin Z, Liang X, et al. Comparison of source rocks from the Lower Silurian Longmaxi Formation in the Yangzi Platform and the Upper Devonian Semiluksk Formation in East European Platform[J]. Energy Geoscience, 2021,2021(2):63-72.
[21] Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of northcentral Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007,91(4):475-499.
[22] IHS. Central Volga-Urals Province Domanik (CVU) Shale Continuous-type[R].IHS, 2024.
[23] Smirnov M B, Fadeeva N P, Vanyukova N A. Applicability Limits of the Maturity Concept in Organic Geochemistry[J]. Geochemistry international, 2023,61(2):137-149.
[24] 贺鸿冰, 何登发, 温志新, 等. 乌拉尔前陆盆地带大油气田形成条件与分布规律[J]. 新疆石油地质, 2012,33(2):256-261.
He Hongbing, He Dengfa, Wen Zhixin, et al. Formation and distribution of giant oil-gas fields in Ural Forland Basin Belt [J]. XinJIang Petroleum Geology, 2012,33(2):256-261.
[25] Gafurova D, Kalmykov A, Korost D, et al. Macropores generation in the domanic formation shales: Insights from pyrolysis experiments[J]. Fuel (Guildford), 2021,289:119933.
[26] Gafurova D R, Korost D V, Kozlova E V, et al. Pore Space Change of Various Lithotypes of the Kerogen Domanic Rocks at Different Heating Rates[J]. Georesursy, 2017,19(3):255-263.
[27] Zou C, Qiu Z, Zhang J, et al. Unconventional Petroleum Sedimentology: A Key to Understanding Unconventional Hydrocarbon Accumulation[J]. Engineering, 2022,2022(18):62-78.
[28] 朱伟林, 王志欣, 宫少波, 等. 国外含油气盆地丛书:俄罗斯含油气盆地[M]. 北京: 科学出版社, 2012.
Zhu Weilin, Wang Zhixin, Gong Shaobo, et al. Foreign oil and gas basin series: oil and gas basin of Russia [M]. Beijing: Science Press, 2012.
[29] Poludetkina E N, Smirnov M B, Fadeeva N P, et al. Proof of Formation of Organic Matter in Upper Devonian Carbonate and Carbonate-Siliceous Sediments of the South-Tatar Uplift in Constant Photic Layer Anoxia[J]. Geochemistry International, 2017,55(8):726-736.
[30] Bushnev D A, Burdel’Naya N S, Zhuravlev A V. Organic matter in Upper Devonian deposits of the Chernyshev Ridge[J]. Geochemistry international, 2017,55(6):548-558.
[31] 马健, 吴朝东, 王熠哲, 等. 准噶尔盆地渐新世安集海河组类胡萝卜素的发现及古环境意义[J]. 地质学报, 2020,94(6):1853-1868.
Ma Jian, Wu Chaodong, Wang Yizhe, et al. Discovery of carotenoids and its paleolake significance in the Oligocene Anjihaihe Formation, southern Junggar Basin, China. Acta Geologica Sinica, 94(6):1853-1868.
[32] Hartgers W A, Damste J S S, Tequejo A G, et al. A molecular and carbon isotopic study towards the origin and diagenetic fate of diaromatic carotenoids[J]. Organic Geochemistry, 1993,22(3-5):703-725.
[33] Koopmans M P, Koster J, Van Kaam-Peters H M E, et al. Diagenetic and catagenetic products of isorenieratene: Molecular indicators for photic zone anoxia[J]. Geochimica et Cosmochimica Acta, 1996,60(22):4467-4496.
[34] Smirnov M B, Fadeeva N P, Poludetkina E N. Distribution of Anoxic Conditions in the Photic Layer of Sedimentation Basin during Formation of Organic Matter in the Domanik Sediments of the Northern and Central Areas of the Volga–Urals Petroleum Basin[J]. Geochemistry international, 2020,58(3):321-331.
[35] Bushnev D A, Burdel’Naya N S, Ponomarenko E S, et al. Anoxia in the Domanik Basin of the Timan-Pechora region[J]. Lithology and Mineral Resources, 2016,51(4):283-289.
[36] 秦建中, 腾格尔, 付小东. 海相优质烃源层评价与形成条件研究[J].石油实验地质, 2009,31(4):366-372.
Qin Jianzhong, Teng Geer, Fu Xiaodong. Study of forming condition on marine excellent source rocks and its evaluation [J]. Petroleum Geology & Experiment, 2009, 31(4):366-372.
[37] Maksimov, S.P., Dikenshtein, G.Kh., Zolotov, A.N., Kapustin, I.N., Kiryukhin, L.G., Razmyshlyayev, A.A., 1990. Geologiya nefti i gaza Vostochno-Yevropeyskoy platform (Petroleum geology of the East European Platform). Nedra, Moscow, Russian Federation. Page(s) 1-274.
[38] Ananyev, V.V., 2010. Qualitative evaluation of the Semilukskiy-Rechitskiy sediments’ petroleum generating potential in Tatarstan (in Russian). Georesursy, 3 (35):1-4. |