Please wait a minute...
 首页  杂志简介 编委会 投稿须知 下载中心 期刊订阅 广告合作 留言板 联系我们 English
  中文核心期刊要目总览
中国期刊全文数据库(CJFD)收录
中文科技期刊数据库原文收录
中国石油文献数据库收录
美国化学文摘(CA,Chemical Abstracts)收录
美国石油文摘(PA,Petroleum Abstracts)收录
最新录用  |  当期目录  |  热点文章  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行
中国石油勘探  2018, Vol. 23 Issue (2): 37-42    DOI: 10.3969/j.issn.1672-7703.2018.02.005
  勘探案例 本期目录 | 过刊浏览 | 高级检索 |
地质工程一体化新内涵在低渗透油田的实践——以新立油田为例
许建国, 赵晨旭, 宣高亮, 何定凯
中国石油吉林油田公司
Application of the new connotation of geology-engineering integration in low permeability oilfields:a case study on Xinli oilfield
Xu Jianguo, Zhao Chenxu, Xuan Gaoliang, He Dingkai
PetroChina Jilin Oilfield Company
全文: PDF(2367 KB)   HTML  ()
输出: BibTeX | EndNote (RIS)      
摘要 吉林油田受低渗透、低丰度等基本地质特征及低油价的双重影响,近年来新区百万吨产能建设投资达95亿元,老区常规重压产出投入比不足1.0,效益建产、稳产难度加大。为应对上述挑战,实现油田低成本高效开发,提出以"大压裂"技术理念为核心的地质工程一体化新内涵,在以新立油田为代表的低渗透油田开展一系列技术研究和现场试验。地质工程一体化新内涵主要体现在以下几个方面:①围绕工程技术需求,对区块的分层产出、吸水、压力、裂缝方位及储隔层应力等资料进行再录取认识,从而提高方案设计的针对性。②根据压裂工艺及施工需求,重新优化钻井井身结构及地面井位,优化钻井平台井数,保证建产投资总额最低。③与前期地质再认识、钻井再优化相结合,构建以"转向压裂、蓄能压裂、调堵压裂、干扰压裂"为主的压裂技术系列,提高区块压裂效果。④创新采油、注水、地面工程、物联网等一系列配套技术,降低一次性投资,降低运行成本。技术模式在以Ⅲ区块3号平台为代表的新区产建和Ⅵ区块中部为代表老区挖潜领域应用并获得显著效果,3号平台油井初产、稳产较主体区分别提高40%、57%,投资收益率提高8.2%,百万吨产建投资降低16%;Ⅵ区块中部压后投产16个月,单井累计增油超过400t,增产效果是常规压裂的4倍,产出投入比大于2.0。实践表明,对于地质情况认识相对清楚的低渗透油田,采取以工程为核心的地质工程一体化模式,是应对目前油田效益开发难度大这一难题的有效措施。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许建国
赵晨旭
宣高亮
何定凯
关键词 地质工程一体化低渗透油田压裂改造低成本工程技术    
Abstract:In recent years, Jilin oilfield invests 9.5 billion yuan for the productivity construction of one million tons in the new areas, and the output-to-input ratio of conventaionl refracturing in old areas is less than 1.0, and profitable productivity construction and stable prodution becomre more and more difficult due to the dual effect of its basic geological characteristics (low permeability and low abundance) and low oil price. In order to deal with these challenges and realize low-cost efficient development in Jilin oilfield, the new connotation of geology-engineering integration with the techncial concept of "large fracturing" as the core was proposed, and then a series of technological research and field test were carried out in low permeability oilfields, e.g. Xinli oilfield. The new connotation of geology-engineering integration is embodied as follows. First, according to the engineering and technological requirements, the data of the block is acquired and recognized again, including stratified yield, hydroscopicity, pressure, fracure azimuth and the stress of reservoir and barrier, so that the project design will be more targeted. Second, according to the fracturing technology and construction requirements, the well structure and surface location of the wells are reoptimized and the number of drilling platforms are optimized so as to minimize the total productivity construction investment. Third, based on previous geological recognition and drilling optimization, a series of fracturing technologies with "turnaround fracturing, energized fracturing, plugging contorl fracturing and interference fracturing" as the main parts are developed. And fourth, a series of supporting technologies are innovated, including oil production, water injection, surface engineering and Internet of Things, to reduce the disposable investment and cut down the operation cost. This technological mode is applied to the productivity construction of new areas (e.g. No.3 platform in block Ⅲ) and the potential tapping of old areas (e.g. the middle area of block VI), and the application results are remarkable. Compared with the main area, No.3 platform is 40% higher in initial production, 57% higher in stable production, 8.2% higher in return rate and 16% lower in productivity construciton investment of one million tons. After fracturing is carried out in the middle of block VI, the single-well cumulative oil increment is over 400 t in the commissioning period of 16 months, its stimulation result is 4 times of the conventional fracturing result, and the output-to-input ratio is higher than 2.0. It is practically indicated that the integrated geology and enginnering mode with the engineering as the core is currently the effective way to solve the difficulty of profitable development in the low permeability oilfields whose geological situations are understood more definitely.
Key wordsgeology-engineering integration    low permeability oilfield    fracturing stimulation    low-cost engineering technology
收稿日期: 2017-10-26      出版日期: 2018-03-16
基金资助:国家科技重大专项"致密油储层高效体积改造技术"(2016ZX05046-004)。
引用本文:   
许建国, 赵晨旭, 宣高亮, 何定凯. 地质工程一体化新内涵在低渗透油田的实践——以新立油田为例[J]. 中国石油勘探, 2018, 23(2): 37-42.
Xu Jianguo, Zhao Chenxu, Xuan Gaoliang, He Dingkai. Application of the new connotation of geology-engineering integration in low permeability oilfields:a case study on Xinli oilfield. China Petroleum Exploration, 2018, 23(2): 37-42.
链接本文:  
http://www.cped.cn/CN/10.3969/j.issn.1672-7703.2018.02.005      或      http://www.cped.cn/CN/Y2018/V23/I2/37
[1] 王峰,李兴科,张应安.地质工程一体化在大平台在集约化建井中的试验——以吉林油田新立Ⅲ区块为例[J].中国石油勘探,2017, 22(1):6-11. Wang Feng, Li Xingke, Zhang Yingan. Application of geology and engineering integration in the intensive well construction on a large platform:a case study on Xinli Ⅲ block,Jilin oilfield[J].China Petroleum Exploration, 2017,22(1):6-11.
[2] 胡文瑞.地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J].中国石油勘探,2017,22(1):1-5. Hu Wenrui.Geology-engineering integration-a necessary way to realize profitable exploration and development of complex reservoris[J]. China Petroleum Exploration, 2017,22(1):1-5.
[3] 鲜成刚,张介辉,陈欣,梁兴,文恒,王高成.地质力学在地质工程一体化中的应用[J].中国石油勘探,2017,22(1):75-88. Xian Chenggang, Zhang Jiehui, Chen Xin, Liang Xing, Wen Heng, Wang Gaocheng. Application of geomechanics in geology-engineering integration[J]. China Petroleum Exploration, 2017,22(1):75-88.
[4] 何海清,李建忠.中国石油"十一五"以来油气勘探成果、地质新认识与技术进展[J].中国石油勘探,2014,19(6):1-13. He Haiqing, Li Jianzhong. Petrochina's oil and gas exploration results, new geological theories and technological achievements since 11th Five-Year Plan Period[J]. China Petroleum Exploration, 2014,19(6):1-13.
[5] 赵鹏飞.勘探开发一体化协作工作平台集成建设[J].石油工业计算机应用,2014(3):47-49. Zhao Pengfei. Exploration and development integration of collaborative work platform integration construction[J]. Computer Applications of Petroleum, 2014(3):47-49.
[6] 白洪彬,王国庆,何淑娟,陈雷.新立油田V区块扶余油层沉积微相研究[J].石油天然气学报,2014,36(3):44-46. Bai Hongbin, Wang Guoqing, He Shujuan, Chen Lei. Xinli oilfield V block in Fuyu reservoir sedimentary microfacies research[J]. Journal of Oil and Gas Technology,2014,36(3):44-46.
[7] 薛永超.新立油田扶杨油层裂缝特征及对开发影响[J].复杂油气藏,2010,3(3):50-53. Xue Yongchao.Fracture features and their influence on the development of Fuyang Formation in Xinli oilfield[J]. Complex Hydrocarbon Reservoirs, 2010,3(3):50-53.
[8] 吴琼.新立油田断层附近高效调整井部署方式研究[J].特种油气藏,2012,19(4):73-76. Wu Qiong. Study on the deployment mode of high efficiency adjustment wells in the vicinity of the fault of the Xinli oilfield fault[J].Special Oil and Gas Reservoirs, 2012,19(4):73-76.
[9] 李建召,杨兆中,李玉涛,李小刚,郑江红,苏洲.暂堵转向压裂裂缝扩展轨迹研究[J].石油化工应用,2015,34(8):26-31. Li Jianzhao, Yang Zhaozhong, Li Yutao, Li Xiaogang, Zheng Jianghong, Su Zhou. Study on fracture propagation trajectory of temporary plugging and reoriented fracturing[J].Petrochemical Indusery Application,2015,34(8):26-31.
[10] 林承焰.剩余油形成与分布[M].东营:石油大学出版社,2000:42. Li Chengyan. Remaining oil formation and distribution[M].Dongying:University of Petroleum Press,2000:42.
[11] 马福军,李楠,季世侠.新立油田压裂增产量预测模型的建立及应用[J]. 特种油气藏,2017,24(3):86-89. Ma Fujun, Li Nan, Ji Shixia. Establishment and application of an incremental production prediction model by fracturing in Xinli oilfield[J]. Special Oil & Gas Reservoirs,2017,24(3):86-89.
[12] 崔传智,丰雅,张传宝,吕广忠,隋迎飞.基于均衡驱替的低渗透油藏直井压裂缝长优化方法[J].油气地质与采收率,2017,24(6):65-71. Cui Chuanzhi,Feng Ya,Zhang Chuanbao,Lü Guangzhong,Sui Yingfei.Optimization method of fracture length of vertical wells in low-permeability reservoirs based on the equilibrium displacement Petroleum Geology and Recovery Efficiency,2017,24(6):65-71.
[13] 才博,丁云宏,卢拥军,王欣,卢海兵.提高改造体积的新裂缝转向压裂技术及其应用[J].油气地质与采收率,2012,19(5):108-110. Cai Bo, Ding Yunhong, Lu Yongjun, Wang Xin, Lu Haibing. Improve the volume of new fracture to fracturing technology and application[J]. Petroleum Geology and Recovery Eficiency,2012,19(5):108-110.
[14] 王越,何青,陈付虎,郭新文,高志军,王帆.浅层裂缝性致密油藏缝网压裂技术[J].大庆石油地质与开发,2015,34(2):99-102. Wang Yue, He Qing, Chen Fuhu, Guo Xinwen, Gao Zhijun, Wang Fan. Fracture-network fracuring technology in the shallow fissured tight-oil reservoir[J]. Petroleum Geology and Oilfield Development in Daqing,2015,34(2):99-102.
[15] 王建海,李娣.塔河缝洞型油藏氮气+二氧化碳吞吐先导试验[J].大庆石油地质与开发,2015,34(6):110-113. Wang Jianhai, Li Di. Pilot test of N2& CO2 huff and puff in tahe fractured-vuggy reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2015,34(6):110-113.
[16] 杨红,吴志伟,余华贵,江绍静,朱庆祝,奥洋洋.低渗油藏水驱后CO2潜力评价及注采方式优选[J].石油与天然气化工,2015,44(3):89-93. Yang Hong, Wu Zhiwei, Yu Huagui,Jiang Shaojing,Zhu Qingzhu, Ao Yangyang. CO2 flooding potential evaluation and its injection-production method optimization after water flooding in low permeability reservoir[J]. Chemical Engineering of Oil and Gas,2015,44(3):89-93.
[17] 周鹰,张新委,孙洪安,戴文凤.油水井套损机理及综合防护技术应用研究[J].特种油气藏,2005,12(3):79-82. Zhou Ying, Zhang Xinwei, Sun Hongan, Dai Wenfeng.Casing failure mechanism and preventive technology[J]. Special Oil & Gas Reservoirs,2005,12(3):79-82.
[18] 刘乃震,柳明.苏里格气田苏53区块工厂化作业实践[J].石油钻采工艺,2014,36(6):16-19. Liu Naizhen,Liu Ming.Factory operation practice in Su 53 block in Sulige gasfield[J]. Oil Drilling and Production Technology,2014,36(6):16-19.
[19] 周新源,杨海军.塔里木油田碳酸盐岩油气藏勘探开发一体化实践与成效[J].中国石油勘探,2012,17(5):1-9. Zhou Xinyuan,Yang Haijun.Tarim oilfield carbonate oil and gas exploration and development integration practice and effect[J]. China Petroleum Exploration,2012,17(5):1-9.
[20] 文乾彬,杨虎,孙纬国,陈伟峰,张宁.吉木萨尔图凹陷致密油大井丛"工厂化"水平井钻井技术[J].新疆石油地质,2015,36(3):334-337. Wen Qianbin,Yang Hu,Sun Weiguo,Chen Weifeng,Zhang Ning.Factory-like drilling technology of cluster horizontal wells for tight oil development in Jimusaer sag,Jungger Basin[J].Xinjiang Petroleum Geology,2015,36(3):334-337.
[21] 曾义金.页岩气开发的地质与工程一体化技术[J].石油钻探技术,2014,42(1):1-6. Zeng Yijin.Integration technology of geology&engineering for shale gas development[J]. Petroleum Drilling Techniques,2014,42(1):1-6.
[22] 吴奇,梁兴,鲜成钢,李峋.地质工程一体化高效开发中国南方海相页岩气[J].中国石油勘探,2015,20(4):1-23. Wu Qi,Liang Xing,Xian Chenggang,Li Xun.Geoscience-to-production integration ensures effective and efficient South China marine shale gas development[J]. China Petroleum Exploration,2015,20(4):1-23.
[1] 肖佳林, 李奎东, 高东伟, 包汉勇. 涪陵焦石坝区块水平井组拉链压裂实践与认识[J]. 中国石油勘探, 2018, 23(2): 51-58.
[2] 张杨, 杨向同, 滕起, 徐永辉, 薛艳鹏, 徐国伟, 李伟, 彭芬. 塔里木油田超深高温高压致密气藏地质工程一体化提产实践与认识[J]. 中国石油勘探, 2018, 23(2): 43-50.
[3] 杜洪凌, 许江文, 李峋, 陆军, 章敬, 彭永灿, 陈进, 王磊. 新疆油田致密砂砾岩油藏效益开发的发展与深化——地质工程一体化在玛湖地区的实践与思考[J]. 中国石油勘探, 2018, 23(2): 15-26.
[4] 赵贤正, 赵平起, 李东平, 武玺, 汪文昌, 唐世忠. 地质工程一体化在大港油田勘探开发中探索与实践[J]. 中国石油勘探, 2018, 23(2): 6-14.
[5] 姜彬, 尚凡杰, 王亚青, 杨莉, 武静. 深水油田油藏评价及工程实施的应用与效果[J]. 中国石油勘探, 2018, 23(2): 83-89.
[6] 温声明, 文桂华, 李星涛, 李翔. 地质工程一体化在保德煤层气田勘探开发中的实践与成效[J]. 中国石油勘探, 2018, 23(2): 69-75.
[7] 刘乃震, 王国勇, 熊小林. 地质工程一体化技术在威远页岩气高效开发中的实践与展望[J]. 中国石油勘探, 2018, 23(2): 59-68.
[8] 杨海军, 张辉, 尹国庆, 韩兴杰. 基于地质力学的地质工程一体化助推缝洞型碳酸盐岩高效勘探——以塔里木盆地塔北隆起南缘跃满西区块为例[J]. 中国石油勘探, 2018, 23(2): 27-36.
[9] 杨向同, 滕起, 张杨, 于银华, 李伟, 冯觉勇, 郑子君, 王振兰, 高欣鑫, 董健毅. 地质工程一体化支撑下的裂缝性致密砂岩气藏压后评估及产能预测方法研究[J]. 中国石油勘探, 2018, 23(2): 104-116.
[10] 刘涛, 石善志, 郑子君, 纪拥军, 王磊. 地质工程一体化在玛湖凹陷致密砂砾岩水平井开发中的实践[J]. 中国石油勘探, 2018, 23(2): 90-103.
[11] 吴奇, 胡文瑞, 李峋. 地质工程一体化在复杂油气藏效益勘探开发中存在的“异化”现象及思考建议[J]. 中国石油勘探, 2018, 23(2): 1-5.
[12] 吴宗国, 梁兴, 董健毅, 李兆丰, 张朝, 王高成, 高阳, 李峋. 三维地质导向在地质工程一体化实践中的应用[J]. 中国石油勘探, 2017, 22(1): 89-98.
[13] 王昕, 杨斌, 王瑞. 吐哈油田低饱和度油藏地质工程一体化效益勘探实践[J]. 中国石油勘探, 2017, 22(1): 38-45.
[14] 刘乃震, 何凯, 叶成林. 地质工程一体化在苏里格致密气藏开发中的应用[J]. 中国石油勘探, 2017, 22(1): 53-60.
[15] 梁兴, 王高成, 张介辉, 舒红林, 刘臣, 李兆丰, 徐政语, 张朝, 李德旗, 焦亚军, 张永强, 李庆飞, 覃军, 尹开贵, 罗瑀峰. 昭通国家级示范区页岩气一体化高效开发模式及实践启示[J]. 中国石油勘探, 2017, 22(1): 29-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《中国石油勘探》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: