中国石油勘探 ›› 2025, Vol. 30 ›› Issue (6): 185-200.DOI: 10.3969/j.issn.1672-7703.2025.06.013

• 工程技术 • 上一篇    

煤岩气井主动式控压排采方法及应用研究

邓泽1,2,3,赵群1,2,3,李聪4,马立民4,张雷5,丁蓉5,费世祥6,黄道军6,黄锦袖6,王树慧6,张先敏7   

  1. 1. 中国石油勘探开发研究院,北京 100083;2. 中国石油集团煤岩气重点实验室,河北廊坊 065007;3. 国家能源页岩气研发(实验)中心,河北廊坊 065007;4. 中国石油冀东油田分公司,河北唐山 063000;5. 中石油煤层气有限责任公司,北京 100083;6. 中国石油长庆油田分公司,陕西西安 710018;7. 深层油气全国重点实验室(中国石油大学(华东)),山东青岛 266580
  • 发布日期:2025-11-14
  • 作者简介:邓泽(1982-),男,山西运城人,硕士,中国石油勘探开发研究院高级工程师,主要从事非常规天然气实验测试与储层评价研究。地址:北京市海淀区学院路20号,邮政编码:100083。
  • 基金资助:
    国家科技重大专项“深层煤岩气成藏机理与效益开发技术”(2025ZD1404200);中国石油天然气股份有限公司前瞻性基础性项目“煤岩气富集规律与开发机理研究”(2024DJ23)。

Active pressure-reduction drainage control method and its application for coal–rock gas reservoirs

Deng Ze1,2,3,Zhao Qun1,2,3,Li Cong4,Ma Limin4,Zhang Lei5,Ding Rong5,Fei Shixiang6,Huang Daojun6,Huang Jinxiu6,Wang Shuhui6,Zhang Xianmin7   

  1. 1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China; 2. Key Laboratory of Coalrock Gas, CNPC, Langfang 065007, China; 3. National Energy Shale Gas R&D (Experiment) Center, Langfang 065007, China; 4.PetroChina Jidong Oilfield Company, Tangshan 063000, China; 5. PetroChina Coalbed Methane Company Limited, Beijing 100083,China; 6. PetroChina Changqing Oilfield Company, Xi’an 710018, China; 7. State Key Laboratory of Deep Oil and Gas, China University of Petroleum(East China), Qingdao 266580, China
  • Published:2025-11-14

摘要: 与中浅部煤层相比,深部煤层在气水赋存特征、产出机制及工程响应方面存在显著差异。在深部原位高压条件下,游离气体产出以连续介质渗流为主,储层压力与井底流压的变化直接影响气水赋存状态、运移驱动力以及产能演化规律,合理的压力管控有助于增强渗流产气能力。基于压力演化对煤岩气运移机制的控制作用,提出并建立了一种以差异化井底流压调控为核心的主动式降压排采控制方法,该方法构建了压裂液临界压差模型、等流度点与等导压点判据及气水比动态识别模型,揭示了不同生产阶段的流体运移特征与压差控制规律,形成了“安全放喷—稳定排水—协调产气—提产稳产”的分阶段井底流压管控体系,实现了压力系统与渗流机制、解吸动力的全过程动态匹配。基于鄂尔多斯盆地东缘典型煤岩气井的数值模拟验证表明,主动式控压策略能够分级释放与有效利用储层能量,使气井日产气量呈“多峰式”增长,预测采收率较无控压条件提高约8.9个百分点。矿场试验结果进一步表明,该策略通过分阶段、分级降压调控有效延缓压降过程、抑制气水比过快上升,实现气水两相流动平衡,逐步释放产能,显著提升单井产能与稳产时长。研究成果可为鄂尔多斯盆地煤岩气高效开发提供理论依据与工程指导。

关键词: 鄂尔多斯盆地;煤岩气;主动式降压;等流度点;气水比;数值模拟

Abstract: Compared with shallow and medium-depth coal seams, deep coal reservoirs exhibit significant differences in gas–water occurrence, production mechanisms, and engineering responses. Under in situ high-pressure conditions, free gas primarily flows as a continuous medium, and variations in reservoir pressure and bottom-hole flowing pressure directly influence gas–water distribution, migration driving forces, and production evolution. Proper pressure management enhances gas production via matrix and fracture flow. Based on the control of coalbed methane (CBM) migration mechanisms by pressure evolution, an active depressurization and production control method centered on differentiated bottom-hole pressure regulation is proposed. This approach incorporates a critical fracturing fluid pressure model, criteria for iso-flow and iso-pressure points, and a dynamic gas–water ratio identification model, revealing the fluid migration characteristics and pressure-differential control rules across different production stages. A staged bottom-hole pressure management system—“safe flow initiation–stable dewatering–coordinated gas production–enhanced output and stable production”—is established, achieving dynamic coupling of pressure, flow mechanisms, and desorption kinetics throughout the production process. Numerical simulations based on typical CBM wells on the eastern margin of the Ordos Basin indicate that the active pressure-control strategy enables graded energy release and effective utilization of reservoir energy, producing a “multi-peak” daily gas production profile and improving predicted recovery by approximately 8.9% compared with uncontrolled conditions. Field tests further demonstrate that staged and graded depressurization effectively slows the pressure decline, mitigates rapid gas–water ratio increases, maintains two-phase flow balance, and gradually releases production capacity, significantly enhancing single-well output and production stability. These results provide a theoretical basis and practical guidance for the efficient development of CBM in deep coal-rock gas reservoirs of the Ordos Basin.

Key words: Ordos Basin; coal–rock gas; active pressure-reduction; equal flow point; gas–water ratio; numerical simulation

中图分类号: