中国石油勘探 ›› 2023, Vol. 28 ›› Issue (5): 126-134.DOI: 10.3969/j.issn.1672-7703.2023.05.011

• 工程技术 • 上一篇    下一篇

基于地质工程一体化的CO2泡沫压裂优化设计与实践——以苏里格气田苏X区块为例

田鸿照1,苑秀发2,李云云3,王玉柱3,雒君3,曹晓莉3,赵国英1,徐传龙1,吴则鑫1,朱会娟4   

  1. 1中国石油集团长城钻探工程有限公司地质研究院;2中国石油集团长城钻探工程有限公司压裂公司;3中国石油玉门油田 公司老君庙采油厂;4中国石油长庆油田公司第四采油厂
  • 出版日期:2023-09-15 发布日期:2023-09-15
  • 作者简介:田鸿照(1983-),男,河北保定人,硕士,2011年毕业于西南石油大学,高级工程师,现主要从事非常规油气藏数值模拟方面的研究工作。地址:辽宁省盘锦市大洼区林丰路总部花园A3-1栋,邮政编码:124010。
  • 基金资助:
    中国石油集团长城钻探工程有限公司科技项目“苏里格致密气老区剩余气评价及产能接替区开发技术研究”(GWDC202201-04(01))。

Optimization design and practice of CO2 foam fracturing with geology and engineering integration: a case study of Su X block in Sulige Gasfield

Tian Hongzhao1,Yuan Xiufa2,Li Yunyun3,Wang Yuzhu3,Luo Jun3,Cao Xiaoli3,Zhao Guoying1,Xu Chuanlong1,Wu Zexin1,Zhu Huijuan4   

  1. 1 Geological Research Institute of CNPC Greatwall Drilling Company; 2 Fracturing Service Company of CNPC Greatwall Drilling Company; 3 Laojunmiao Oil Production Plant, PetroChina Yumen Oilfield Company; 4 The Fourth Oil Production Plant, PetroChina Chang qing Oilfield Company
  • Online:2023-09-15 Published:2023-09-15

摘要: CO2泡沫压裂是提高致密砂岩气藏开发效果的有效手段。苏里格气田苏X区块中部为下一步稳产重要接替区,相对于北部主产区,其储层连续性、物性均较差,可动水饱和度较高,导致常规水基压裂气井水锁伤害现象严重、压裂液返排难度增大。以苏X-A3井为例,基于CO2泡沫压裂地质工程一体化理念,首先应用建模数模一体化,研究储层物性、含气性与可动水分布等生产特征选井选层,避水布井射孔;其次应用地质压裂一体化,研究储层物性与压裂工艺匹配性,优化压裂液体系与压裂规模、泵注程序;最后应用评估修正一体化,根据返排试气试采资料,评价压裂效果与工艺的适应性,修正压裂前地质模型,完成地质工程一体化技术闭环。研究结果表明:地质工程一体化理念应用于CO2泡沫压裂优化设计,能够更全面准确地认识储层品质与生产动态,提高CO2泡沫压裂设计的针对性,为CO2泡沫压裂效果提供保障。现场实践表明,该方法较以往常规水基压裂设计更符合实际需求。

关键词: 地质工程一体化, CO2泡沫压裂, 可动水饱和度, 致密砂岩气藏, 优化设计

Abstract: CO2 foam fracturing is an effective measure to improve the development result of tight sandstone gas reservoir. The central part of Su X block in Sulige Gasfield is a major replacement area for stable gas production in the near future. Compared with the main production area in the northern part, it is characterized by poor reservoir continuity and physical properties, high saturation of movable water, leading to severe water lock damage of gas wells when using conventional water-based fracturing, and increasing difficulty in fracturing fluid flowback. By taking Well Su X-A3 as an example, the concept of geology and engineering integrated CO2 foam fracturing is innovatively practiced.Firstly, the integration of geological modeling and numerical simulation is applied to analyze the production characteristic parameters such as reservoir physical properties, gas-bearing property and movable water distribution, so as to optimally select well location and perforation interval to avoid formation water damage; Secondly, the geology and fracturing integration is applied to analyze the matching between reservoir physical properties and fracturing technology, so as to optimize the fracturing fluid system, fracturing size and pumping program; Finally, by using the flowback, well test, and gas production data, the evaluation and correction integration is applied to assess the fracturing results and technological adaptability, correct the pre-fracturing geological model, and complete the closed loop of geology and engineering integration technology. The study results show that the application of the geology and engineering integration in the optimization design of CO2 foam fracturing enables to more comprehensively and accurately understand the reservoir quality and production performance, improve the pertinence of CO2 foam fracturing design, and provide guarantee for a better result by using CO2 foam fracturing. Field practice shows that this method is more in line with the practical needs than the previous conventional water-based fracturing design.

中图分类号: