[1] 姜在兴,张文昭,梁超,等.页岩油储层基本特征及评价要素[J].石油学报,2014,35(1):184-196.
Jiang Zaixing, Zhang Wenzhao, Liang Chao, et al. Characteristics and evaluation elements of shale oil reservoir [J]. Acta Petrolei Sinica, 2014,35(1):184-196.
[2] 潘仁芳,伍媛,宋争.页岩气勘探的地球化学指标及测井分析方法初探[J].中国石油勘探,2009,14(3):6-9,28,1.
Pan Renfang, Wu Yuan, Song Zheng. Geochemical parameters for shale gas exploration and basic methods for well logging analysis [J]. China Petroleum Exploration, 2009,14(3):6-9,28,1.
[3] 王贵文,朱振宇,朱广宇.烃源岩测井识别与评价方法研究[J].石油勘探与开发,2002,29(4):50-52.
Wang Guiwen, Zhu Zhenyu, Zhu Guangyu. Logging identification and evaluation of Cambrian-Ordovician source rocks in syneclise of Tarim Basin [J]. Petroleum Exploration and Development, 2002,29(4):50-52.
[4] 袁彩萍,徐思煌,薛罗.珠江口盆地惠州凹陷主力烃源岩测井预测及评价[J].石油实验地质,2014,36(1):110-116.
Yuan Caiping, Xu Sihuang, Xue Luo. Prediction and evaluation with logging of main source rocks in Huizhou Sag, Pearl River Mouth Basin [J]. Petroleum Geology and Experiment, 2014,36(1):110-116.
[5] 罗昕,朱传庆,张宝收,等.利用自然伽马测井估算塔里木盆地沉积层生热率[J].地质学报,2020,94(7):2078-2088.
Luo Xin, Zhu Chuanqing, Zhang Baoshou, et al. Heat production rate calculation using gamma-ray logging of the sedimentary formation in the Tarim Basin, Northwest China [J].Acta Geologica Sinica, 2020,94(7):2078-2088.
[6] 陈瑞杰,路俊刚,李勇,等.基于NRBO-CNN-LSTM模型的陆相浅水湖盆总有机碳测井预测优选及应用[J].成都理工大学学报(自然科学版),2025,52(5):966-985.
Chen Ruijie, Lu Jungang, Li Yong, et al. Logging prediction optimization and the application of total organic carbon in continental Shallow Lake Basins based on the Newton-Raphson optimization convolutional neural network combined with the long short-term memory neural network [J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2025,52(5):966-985.
[7] 张晋言.页岩油测井评价方法及其应用[J].地球物理学进展,2012, 27(3):1154-1162.
Zhang Jinyan. Well logging evaluation method of shale oil reservoirs and its applications [J]. Progress in Geophysics, 2012,27(3):1154-1162.
[8] Goliatt L, Saporetti C M, Oliveira L C, et al. Performance of evolutionary optimized machine learning for modeling total organic carbon in core samples of shale gas fields [J]. Petroleum, 2024,10(1):150-164.
[9] Beers R F. Radioactivity and organic content of some Paleozoic shales [J]. AAPG Bulletin, 1945,29(1):1-22.
[10] 张成龙,陶士振,白斌,等.基于支持向量机模型的烃源岩有机碳含量预测:以鄂尔多斯盆地为例[J].天然气地球科学,2019,30(5):761-768.
Zhang Chenglong, Tao Shizhen, Bai Bin, et al. Source rock TOC content prediction based on the support vector machine model:an application in Ordos Basin [J]. Natural Gas Geoscience, 2019,30(5):761-768.
[11] Mandal P P, Rezaee R, Emelyanova I. Ensemble learning for predicting TOC from well-logs of the unconventional Goldwyer Shale [J]. Energies, 2022,15(1):216.
[12] 石磊.一种基于随机森林算法的探明储量预测新方法[J].中国石油勘探,2023,28(3):167-172.
Shi Lei. A new method for predicting proven reserves based on random forest algorithm [J]. China Petroleum Exploration, 2023,28(3):167-172.
[13] Yan Jingwen, He Wenxiang, Gao Xiaoyang, et al. TOC prediction of source rocks based on the convolutional neural network and logging curves: a case study of Pinghu Formation in Xihu Sag [J]. Open Geosciences,2024,16(1):20220632.
[14] 唐佰强,刘招君,孟庆涛,等.松辽盆地东南隆起区上白垩统青山口组油页岩有机碳含量预测及效果评价[J].大庆石油地质与开发,2021,40(6):124-132.
Tang Baiqiang, Liu Zhaojun, Meng Qingtao, et al. Prediction and effect evaluation of organic carbon content of oil shale in upper cretaceous Qingshankou Formation in Southeast Uplift of Songliao Basin [J]. Petroleum Geology & Oilfield Development in Daqing, 2021,40(6):124-132.
[15] 唐生寿,杨斌,靳九龙,等.基于机器学习的总有机碳含量测井预测方法对比研究[J].测井技术,2024,48(4):428-437.
Tang Shengshou, Yang Bin, Jin Jiulong, et al.Comparative study on total organic carbon content logging prediction method based on machine learning [J]. Well Logging Technology, 2024,48(4):428-437.
[16] 张潇,李超,窦衍光,等.利用随机森林算法预测中国东部海域表层沉积物有机碳含量分布[J].海洋地质与第四纪地质,2025,45(4):187-197.
Zhang Xiao, Li Chao, Dou Yanguang, et al. Predicting the distribution of organic carbon content in surface sediments of the eastern China seas using random forest algorithm [J]. Marine Geology & Quaternary Geology, 2025,45(4):187-197.
[17] 杜涛,曲希玉,王清斌,等.渤中19-6凝析气田孔店组砂砾岩储层压实成岩裂缝垂向演化特征[J].吉林大学学报(地球科学版),2023,53(1):17-29.
Du Tao, Qu Xiyu, Wang Qingbin, et al. Vertical evolution characteristics of compaction diagenetic fractures in glutenite reservoirs of Kongdian Formation in Bozhong 19-6 condensate gas field [J]. Journal of Jilin University (Earth Science Edition), 2023,53(1):17-29.
[18] 仝志刚,李友川,何将启,等.渤海海域渤中凹陷渤中19-6大型凝析气田天然气来源探讨[J].石油实验地质,2022,44(2):324-330,336.
Tong Zhigang, Li Youchuan, He Jiangqi, et al. Gas source of BZ19?6 condensate gas field in Bozhong Sag, Bohai Sea area [J].Petroleum Geology and Experiment, 2022,44(2):324-330,336.
[19] 薛永安,王奇,牛成民,等.渤海海域渤中凹陷渤中19-6深层潜山凝析气藏的充注成藏过程[J].石油与天然气地质,2020,41(5):891-902.
Xue Yongan, Wang Qi, Niu Chengmin, et al. Hydrocarbon charging and accumulation of BZ 19-6 gas condensate field in deep buried hills of Bozhong Depression,Bohai Sea [J]. Oil & Gas Geology, 2020,41(5):891-902.
[20] 程秀申,漆家福,陈书平,等.关于东濮凹陷构造单位的探讨[J].断块油气田,2009,16(4):15-18.
Cheng Xiushen, Qi Jiafu, Chen Shuping, et al. Discussion on structural units of Dongpu Depression [J]. Fault-Block Oil and Gas Field, 2009,16(4):15-18.
[21] 漆家福,杨桥,陆克政,等.渤海湾盆地基岩地质图及其所包含的构造运动信息[J].地学前缘,2004,11(3):299-307.
Qi Jiafu, Yang Qiao, Lu Kezheng, et al. Geologic map of sub-outcrop and its implied information of tectogenesis in Bohai Bay Basin province [J]. Earth Science Frontiers, 2004,11(3):299-307.
[22] 谈玉明,徐田武,张云献,等.东濮凹陷天然气富集规律[J].断块油气田,2017,24(4):442-447.
Tan Yuming, Xu Tianwu, Zhang Yunxian, et al. Gas accumulation regularity of Dongpu Depression [J]. Fault-Block Oil and Gas Field, 2017,24(4):442-447.
[23] 周新科,许化政.东濮凹陷地质特征研究[J].石油学报,2007, 28(5):20-26.
Zhou Xinke, Xu Huazheng. Discussion on geological features of Dongpu Depression [J]. Acta Petrolei Sinica, 2007,28(5):20-26.
[24] 段金宝,徐田武,杨栋栋,等.渤海湾盆地东濮凹陷洼陷带油气地质新认识与勘探突破[J].石油与天然气地质,2025,46(2):377-391.
Duan Jinbao, Xu Tianwu, Yang Dongdong, et al. New insights and exploration breakthroughs in hydrocarbon exploration in sub-sag zones of the Dongpu Sag, Bohai Bay Basin [J]. Oil & Gas Geology, 2025,46(2):377-391.
[25] 谈玉明,程秀申,陈书平,等.东濮凹陷复杂断块群及勘探潜力分析[J].石油与天然气地质,2011,32(4):584-592.
Tan Yuming, Cheng Xiushen, Chen Shuping, et al. Complex fault-block groups in Dongpu Sag and their exploration potential [J]. Oil & Gas Geology, 2011,32(4):584-592.
[26] 陈发亮,李绪涛,朱晖,等.东濮凹陷下第三系沙河街组层序地层划分及盐岩成因探讨[J].沉积学报,2000,18(3):384-388,394.
Chen Faliang, Li Xutao, Zhu Hui, et al. Partition of sequence strata and discussion about Salt- rock resource in Shahejie Formation of Eogene,Dongpu Depression [J]. Acta Sedimentologica Sinica, 2000,18(3):384-388,394.
[27] 谈玉明,李红磊,张云献,等.东濮凹陷古近系优质烃源岩特征与剩余资源潜力分析[J].断块油气田,2020,27(5):551-555,572.
Tan Yuming, Li Honglei, Zhang Yunxian, et al. Analysis to high quality source rock characteristics and residual resource potential in Dongpu Sag in paleogene [J]. Fault-Block Oil and Gas Field, 2020,27(5):551-555,572.
[28] 徐田武,张成富,吕立爽,等.形成规模油田成烃要素下限探讨:以东濮凹陷马寨油田为例[J].断块油气田,2019,26(2):137-141.
Xu Tianwu, Zhang Chengfu, Lv Lishuang, et al. Lower limit discussion of hydrocarbon generation factor for large scale oilfield:taking Mazhai Oilfield of Dongpu Depression as an example [J]. Fault-Block Oil and Gas Field, 2019,26(2): 137-141.
[29] 潘志鸿,庞雄奇,郭坤章,等.东濮凹陷濮卫地区沙三段储层孔隙定量演化[J].中国石油勘探,2018,23(1):91-99.
Pan Zhihong, Pang Xiongqi, Guo Kunzhang, et al. Quantitative simulation of porosity evolution in the third Member of Shahejie Formation in Puwei area in Dongpu Depression [J]. China Petroleum Exploration, 2018,23(1):91-99.
[30] Orr F M, Jr, Yu A D, Lien C L. Phase behavior of CO2 and crude oil in low-temperature reservoirs [J]. Society of Petroleum Engineers Journal, 1985,21(4):480-492.
[31] Shalaby M R, Jumat N, Lai D, et al. Integrated TOC prediction and source rock characterization using machine learning, well logs and geochemical analysis:case study from the Jurassic source rocks in Shams Field, NW Desert, Egypt [J]. Journal of Petroleum Science and Engineering, 2019,176:369-380.
[32] 张志伟,张龙海.测井评价烃源岩的方法及其应用效果[J].石油勘探与开发,2000,27(3):84-87.
Zhang Zhiwei, Zhang Longhai. A method of source rock evaluation by well-logging and its application result [J].Petroleum Exploration and Development, 2000,27(3):84-87.
[33] Passey Q R, Creaney S, Kulla J B, et al. A practical model for organic richness from porosity and resistivity logs [J]. AAPG Bulletin, 1990,74(12):1777-1794.
[34] Breiman L.Random forests [J]. Machine Learning, 2001,45(1): 5-32.
[35] 王民,杨金路,王鑫,等.基于随机森林算法的泥页岩岩相测井识别[J].地球科学,2023,48(1):130-142.
Wang Min, Yang Jinlu, Wang Xin, et al. Identification of shale lithofacies by well logs based on random forest algorithm [J]. Earth Science, 2023,48(1):130-142.
[36] 姚登举,杨静,詹晓娟.基于随机森林的特征选择算法[J].吉林大学学报(工学版),2014,44(1):137-141.
Yao Dengju, Yang Jing, Zhan Xiaojuan. Feature selection algorithm based on random forest [J]. Journal of Jilin University (Engineering and Technology Edition), 2014,44(1):137-141.
[37] 黄莉莎,闫建平,郭伟,等.基于随机森林回归算法的低电阻率页岩气储层饱和度评价[J].测井技术,2023,47(1):22-28.
Huang Lisha, Yan Jianping, Guo Wei, et al. Evaluation of low resistivity shale gas reservoir saturation based on random forest regression method [J]. Well Logging Technology, 2023,47(1):22-28.
[38] 韩晟,韩坚舟,赵璇,等.距离权重改进的Pearson相关系数及应用[J].石油地球物理勘探,2019,54(6):1363-1370.
Han Sheng, Han Jianzhou, Zhao Xuan, et al. A pearson correlation coefficient improved by spatial weight [J]. Oil Geophysical Prospecting, 2019,54(6):1363-1370.
[39] 卢双舫,马延伶,曹瑞成,等.优质烃源岩评价标准及其应用:以海拉尔盆地乌尔逊凹陷为例[J].地球科学(中国地质大学学报),2012,37(3):535-544.
Lu Shuangfang, Ma Yanling, Cao Ruicheng, et al. Evaluation criteria of high-quality source rocks and its applications:taking the Wuerxun Sag in Hailaer Basin as an example [J].Earth Science (Journal of China University of Geosciences), 2012,37(3):535-544. |